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Abstract 

Purpose: This study addresses critical challenges in fine-grained forest fire recognition 

from UAV aerial photography by developing a dynamic threshold adaptive attention 

mechanism capable of real-time environmental adaptation and multi-scale fire 

signature detection across varying conditions. 

Methodology: The proposed framework integrates three core components: dynamic 

threshold determination module, adaptive attention weight calculation system, and 

hierarchical feature fusion network. The algorithm employs real-time analysis of local 

image statistics and environmental parameters to adaptively adjust detection sensitivity. 

Comprehensive evaluation was conducted on three benchmark datasets (FLAME, 

FIgLib, VisiFire) using standard object detection metrics and computational efficiency 
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assessments. 

Findings: The algorithm achieved exceptional performance with mean Average 

Precision (mAP@0.5:0.95) of 0.924 on FLAME dataset and 0.879 on FIgLib dataset, 

representing substantial improvements of 8.3% over best-performing baseline methods. 

VisiFire dataset evaluation corroborated consistent performance improvements across 

diverse surveillance scenarios. Ablation studies revealed individual component 

contributions, with dynamic threshold determination providing 5.2% enhancement. 

Real-time processing capabilities achieved 65.8 FPS on NVIDIA A100 with minimal 

performance degradation across diverse hardware platforms. 

Conclusion: The dynamic threshold adaptive attention mechanism successfully 

overcomes limitations of static threshold systems, demonstrating robust adaptability to 

environmental variations while maintaining computational efficiency suitable for UAV 

deployment scenarios. 

Practical Implications: This algorithm enables deployment on resource-constrained 

UAV platforms for automated forest fire monitoring, providing reliable early warning 

capabilities essential for preventing catastrophic wildfire spread across diverse 

geographical and environmental conditions. 

Keywords: Dynamic Threshold; Adaptive Attention Mechanism; UAV Aerial 

Photography; Forest Fire Detection; Fine-grained Recognition 

1.  Introduction 

Wildland fire is still one of the most deadly disasters that people face, destroying 

entire landscapes and turning meadows into burnt earth. The economies are hit twice as 

hard by firefighting costs and destroyed timber while an emergency siren wails, 

warning animals, crops and humans to evacuate the delta[1]. Record after record falls 

almost every summer as blazes sweep through woods and brush. Scholars trace the 

trend to both a warming atmosphere and the steady spread of roads, farms, and towns 

into the wildland edge. Fresh alarms now ring for surveillance networks that can spot a 

spark within minutes and alert firefighters long before a small glow turns into a raging 

front[2]. Standard methods of monitoring forest fires have certain weaknesses. These 

include limited vision, slowness in the process and the fact that it can be hindered by 

weather changes or rugged topography[3]. The challenge of heterogeneous fuel loads, 

variable weather, and uneven topography forces researchers to invent new detection 
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methods capable of spotting a flare-up, cross-checking its size, and streaming that 

information to a control room within seconds. Systems of that sort would have to 

function equally well over wind-swept grasslands, shaded conifer stands, and even the 

canyons that slice between them. 

Advances in drone technology now fuse seamlessly with cutting-edge computer-

vision techniques, offering wild-land managers an entirely new lens for spotting tree-

top blazes. The airborne platform’s mobility, nimble access to hard-hit ridges, and 

constant data stream rewrite the old rules of first-light inspection[4] Attention-centred 

deep-learning frameworks have burst onto the scene, pushing fire-detection accuracy 

and processing speed to levels that once seemed unreachable. Researchers in both 

industry labs and university workshops now cite these architectures almost in the same 

breath as the smoke alarms mounted on our ceilings[5, 6]. Nevertheless, current 

detection frameworks still struggle to deliver the promised level of fine-grained 

recognition. Small ignition points-and the dense, mottled scenery of a forest-generate a 

host of problems, not to mention the shifting light, smoke, and shadow that can turn an 

obvious fire into a false negative in seconds[7]. Balancing speed and precision in object 

detection is far from routine. Off-the-shelf algorithms tend to collapse as backgrounds 

shift or as the cameras swing from high midday light to the wash of dusk. Even modest 

power caps-common on small drones-derail many promising pipelines[8]. 

Extending earlier investigations into attention-driven fire-detection 

architectures[9, 10], the present work unveils a dynamic-threshold mechanism tailored 

for the demanding context of fine-grained forest-fire classification from UAV imagery. 

The strategy is characterised by a real-time threshold calibration that changes with 

environmental cues, and when combined with multi-scale attention nodes, increases the 

system’s sensitivity to flame signatures which vary greatly in size and luminosity[11]. 

Merging the individual processing modules produces a system that identifies flame 

signatures in a cluttered, colour-rich forest canopyscape far better than any earlier setup. 

What's more, the computational load remains comfortably within the power envelope 

of a hovering drone. Field experiments show the improvement is not illusory; the 

revised pipeline handles the sudden shifts in light and the moving curtains of smoke 

that usually thwart airborne observers. Taken together, these advances nudge fully 

automated wildfire monitoring well beyond the modest performance thresholds that 

have long constrained the field[12]. 

The current investigation addresses the longstanding problem of pinpointing 
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exactly where small, yet dangerous, pockets of flames are hiding in dense tree cover. 

To do so, it proposes a new adaptive attention framework that adjusts its threshold in 

real time while sifting through UAV-captured aerial images. The project pursues three 

interrelated aims: (1) Researchers are designing a threshold-calibration framework that 

continuously adjusts to fluctuations in background noise, visibility, and combustion 

behaviour, (2) The implementation of multi-scale attention mechanisms that can detect 

fire signs at different spatial scales and luminosity levels, (3) maximising detection 

fidelity without overloading the limited processing power of small, battery-bound 

unmanned aerial vehicles, and (4) demonstrating robust performance across diverse 

environmental conditions including variable lighting, smoke density, and complex 

forest backgrounds. 

2. Related Work 

In the past, forest firefighting relied on human eyes squinting from lookout towers 

or pilots circling in small aircraft. These were scenes of equal parts grit and guesswork. 

Such traditional setups took too much time because even the most alert ranger could 

see only what rose directly before them, and smoke, hail, or sheer distance turned 

certainty into a fog of estimates. However, once drones entered the picture, everything 

tilted on its axis; lightweight cameras that buzz overhead feast on live video, zip toward 

burned-out trails, and widen the watchers’ horizon far past any tower or line-of-sight 

scan[13]. Contemporary unmanned aerial vehicles now carry sensor suites that would 

have seemed fantastical a generation ago. The payload typically bundles high-

resolution RGB cameras, infrared imagers, and multispectral scanners tuned to isolate 

heat signatures in several spectral bands. Together, these instruments outperform 

traditional satellite platforms while remaining far easier on local budgets. Because the 

aircraft can remain airborne for hours and revisit the same tract of woodland repeatedly, 

they deliver a constant stream of data that flags smouldering hotspots almost the 

moment they appear. Such early warnings give firefighting crews the head start they 

need to contain a flare-up before it snowballs into a regional disaster. 

Deep learning techniques have reshaped the landscape of fire detection, and 

convolutional neural networks now stand at the forefront of research into automated 

flame recognition. In parallel, the progression of object-detection frameworks-

especially the successive YOLO (You Only Look Once) versions-has proven that 
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systems can spot fires nearly instantaneously without taxing the limited processors 

found on SUAS[14, 15]. Scholars and practitioners have observed the YOLO 

framework progress from its original 2015 release through a growing series of revisions, 

the latest publicised one being YOLOv8. These newer incarnations deliberately address 

persistent problems-small object visibility and reliable multi-scale feature mapping-that 

frequently arise in surveillance scenarios, early-stage fire monitoring included[16, 17]. 

Scholars are currently investigating hybrid neural architectures that blend diverse deep-

learning branches. Early results suggest these ensemble frameworks not only strengthen 

detection reliability but also maintain the sub-second latency critical for time-sensitive 

crisis management[18]. 

Researchers have increasingly turned to attention-based strategies in fire-detection 

technology, a shift that permits systems to recognise minute blaze signatures even when 

cluttered forest scenery shifts with the weather. In practice, channel-based attention 

layers hone in on flame-related wavelengths, quietly dampening extraneous hues; 

multiple experiments lately report a striking boost in precision whether the trial site is 

wind-whipped, rain-soaked, or sun-drenched[19]. The surge in transformer-based 

attention architectures has reignited age-old inquiries into the ways multilayer networks 

collect, mix, and exploit signals dispersed throughout an image. Fresh laboratory results 

indicate that merging standard convolutional pipelines with attention blocks keeps 

detailed fire signatures intact while simultaneously embedding the broader scene 

context required for dependable identification[20]. Recent developments pair advanced 

attention mechanisms with multi-scale feature fusion strategies, allowing detection 

systems to track fire signatures at varied spatial resolutions without excessive 

computational overhead. The combination preserves both detail and performance by 

selectively weighting features according to their scale and relevance in real time[21]. 

Recent studies have focused on the narrow bandwidth and power budgets that 

typically hinder drone surveillance, prompting engineers to prototype streamlined 

neural nets that sacrifice as little accuracy as possible in flight. Meanwhile, teams 

assembling custom image collections for airborne flame spotting cannot avoid trekking 

through smoky forests and sun-drenched prairies; only that kind of varied record 

provides classifiers with the grit they need to generalise when the next blaze sweeps 

through a different landscape[22]. Real-time processing capabilities have emerged as a 

critical requirement, driving the development of edge computing solutions that enable 

on-board processing while maintaining detection accuracy standards necessary for 
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practical deployment[23]. 

Dynamic threshold mechanisms now stand at the forefront of fire-detection 

research, striving to overcome the inherent rigidity of traditional static thresholds. 

Researchers note that these adaptive systems can fine-tune their alerts according to 

shifting environmental cues and fluctuating blaze intensities. Work that fuses different 

learning techniques-mashing together, for instance, machine-learning classifiers and 

statistical filters-suggests that such hybrids vastly enhance early-warning accuracy. By 

continuously ingesting real-time weather data, fuel moisture readings, and inputs from 

acoustic, optical, and infrared sensors, the mixed-algorithm models adjust their decision 

boundaries on the fly, leaving blunt one-size-fits-all thresholds far behind[24]. At 

present, multi-modal sensor fusion techniques are being integrated with adaptive 

threshold algorithms. This integration is considered a promising avenue to enhance the 

robustness of detection, particularly in situations where individual sensor modalities 

may offer conflicting or ambiguous information about potential fire events[25]. 

Although deep learning methods have improved fire detection, there are still many 

difficulties such as dealing with different environmental conditions. This is especially 

true when the background is a complex forest, there are changing lighting conditions 

and the fire sources are small. The current approaches often find it hard to balance 

between sensitivity and false positive rate, more so when it comes to phenomena that 

look like fires, for example, dust clouds, vehicle exhausts or natural atmospheric 

conditions that mimic fire signatures. There’s little research on adaptive threshold 

mechanisms; most of these systems use static thresholds which may not be useful in 

various environmental conditions and intensities of fires. Furthermore, the integration 

of temporal information for improving detection robustness and the development of 

truly adaptive attention mechanisms that can dynamically adjust to changing 

environmental conditions represent significant research gaps that require innovative 

solutions to advance the state-of-the-art in automated forest fire monitoring systems. 

3 Research Methodology 

3.1 Dataset Selection and Preprocessing 

The experimental validation of the proposed algorithm employed widely adopted 

benchmark datasets specifically designed for forest fire detection research, ensuring 
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reproducibility and fair comparison with existing state-of-the-art methodologies. The 

primary dataset utilized in this investigation comprises the FLAME (Fire Luminosity 

Airborne-based Machine learning Evaluation) dataset, which contains aerial video 

recordings captured through UAV photography during prescribed burning of piled 

detritus in Arizona pine forest environments. This dataset provides comprehensive 

coverage of fire detection challenges through 966-second duration videos at 29 FPS 

with 1280×720 resolution, from which frame-wise annotations enable both 

classification and segmentation tasks suitable for evaluating fine-grained recognition 

algorithms. The research drew on the Fire Ignition Library (FigLib), a collection of 

roughly 24,800 high-resolution wildfire smoke images - each measuring either 1,536 

by 2,048 or 2,048 by 3,072 pixels from fixed cameras scattered across Southern 

California. Those images chronicle 315 distinct fire outbreaks recorded by 101 separate 

vantage points and cover a wide range of lighting and atmospheric settings that are 

critical for thoroughly stress-testing new algorithms. 

In addition, the team worked with the VisiFire corpus, which consists of 40 short 

clips taken at 320 by 240 resolution: 13 show open flames, 21 capture smoke plumes 

rising into the sky, 4 display fire on forest canopies, and 2 feature miscellaneous scenes. 

From that footage, analysts routinely harvest between 2,500 and 2,684 labelled frames 

to train classifiers and check their accuracy, and the complete setup is summarised in 

Table 1. 

Table 1: Benchmark Dataset Characteristics and Statistics 

Dataset FLAME FIgLib VisiFire 

Source 
Northern Arizona 

University 
HPWREN/UC San Diego Bilkent University 

Location Arizona pine forest, USA Southern California, USA 
Various surveillance 

locations 

Collection Period 2020-2021 June 2016 - July 2021 2007 

Data Type 
UAV aerial videos + 

extracted frames 

Fixed-camera image 

sequences 

Surveillance videos + 

extracted frames 

Total Content 

966-second videos (29 

FPS); 39,375 labeled 

frames 

24,800 high-resolution 

images; 315 fire 

sequences, 101 cameras 

40 videos; 2,500-2,684 

extracted frames 

Resolution 
Videos: 1280×720; 

Frames: 254×254 
1536×2048, 2048×3072 320×240 

Format 
MP4 (videos), JPEG 

(frames) 
JPEG AVI (videos) 

Fire/Positive ~19,687 frames (50%) ~12,400 images (50%) ~1,250-1,342 frames 
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Samples 

Non-

fire/Negative 

Samples 

~19,688 frames (50%) ~12,400 images (50%) ~1,250-1,342 frames 

Training Set 27,562 frames (70%) 17,360 images (70%) 1,750 frames (70%) 

Validation Set 7,875 frames (20%) 4,960 images (20%) 500 frames (20%) 

Test Set 3,938 frames (10%) 2,480 images (10%) 250 frames (10%) 

Data Size ~2.5 GB total Several GB Various sizes 

Key Features 

Prescribed burns; 

Thermal + RGB data; 

Frame-wise annotations; 

UAV perspective 

Early ignition detection; 

40-min sequences (~81 

images/fire); Fixed-view 

cameras; Temporal 

sequences 

Real-time surveillance; 

Multiple scenarios; 13 

flame + 21 smoke + 4 

forest smoke + 2 other 

videos 

Primary 

Applications 

Classification, 

Segmentation; UAV-

based fire detection 

Smoke detection; Early 

fire ignition detection 

Fire/smoke detection; 

Real-time surveillance 

systems 

Advantages 

High-quality UAV data; 

Thermal imagery; 

Controlled environment 

Large-scale temporal data; 

Real ignition sequences; 

Geographic diversity 

Established benchmark; 

Diverse scenarios; 

Widely used baseline 

Limitations 

Limited to prescribed 

burns; Single geographic 

region 

Fixed-camera perspective 

only; Smoke-focused 

Low resolution; Limited 

scene variety; Older 

dataset 

The comprehensive data preprocessing pipeline encompassed standardized 

procedures essential for optimal model training, incorporating image standardization 

through uniform resizing to 640×640 pixel dimensions and pixel intensity 

normalization to the [0,1] range to ensure computational consistency while preserving 

critical fire signature characteristics. Systematic data augmentation strategies were 

implemented to improve model generalization capabilities through geometric 

transformations including random rotation within ±15° range, horizontal flipping with 

50% probability, and scale variations between 0.9-1.1×, alongside photometric 

augmentations encompassing brightness adjustment within ±10% range, contrast 

enhancement between 0.95-1.05×, and controlled Gaussian noise injection (σ=0.01) to 

enhance robustness against sensor noise commonly encountered in UAV-based imaging 

systems. The preprocessing framework achieved temporal synchronisation by 

extracting frames at uniform intervals and partitioning the collection across a 

conventional seventy-twenty-ten split. This division left training, validation, and test 

subsets disjoint while preserving a balanced mix of fire intensities and environmental 

settings within each portion. 
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3.2 Proposed Algorithm Framework 

An innovative dynamic-threshold adaptive attention mechanism has recently been 

advanced as a robust solution for the notoriously difficult task of pinpointing small-

scale forest fires in variable terrain. The framework marries context-sensitive threshold 

derivation with multi-scale attention routing and is structured around three tightly 

coupled modules. A threshold-calibration engine initially adjusts the sensitivity profile 

on the fly. An adaptive-attention-weight module then generates site-specific 

prominence scores. A tiered-feature-fusion network subsequently blends raw, mid-level, 

and high-level signals into a single prediction that regularly surpasses conventional 

benchmarks. Figure 1 provides a bird's-eye view of the complete architecture. 

 

Figure 1: Dynamic Threshold Adaptive Attention Mechanism Architecture 

A dynamic-threshold-determination mechanism scrutinises the local statistics of 

an image and weighs relevant environmental cues before modulating the detection 

sensitivity in real time. In that respect, its operation mirrors the process laid out in 

Algorithm 1. The threshold calculation methodology utilizes a statistical framework 

that combines local variance analysis, histogram distribution assessment, and gradient 

magnitude evaluation to determine optimal threshold values that maximize detection 

accuracy while maintaining computational efficiency suitable for real-time UAV 

deployment scenarios. 

Algorithm 1: Dynamic Threshold Computation Process 

Input: Image patch 
3H WI   , environmental parameters E  

UAV Aerial

lmage input

640*640*3

CSPDarknet53

Backbone Network

Feature Extraction

Multi-Scale Features

F1, F2, F3, F4

Dynamic Threshold

Determination

· Local Variance

· Histogram Analysis

· Gradient Magnitude

Adaptive Attention

Weight Calculation

·spatial Attention Ws(i.j)  

·Channel Attention Wc(k)

·Global Dependencies

Hierarchical Feature

Fusion Network

·Pyramid Pooling

·Cross-scale Alignment

· Attention Weighting

Multi-branch

Classifier

·Fire Detection

·Intensity Estimation

·Spatial Localization

Final Output

Fire Regions &

Confidence Scores
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Output: Adaptive threshold 
adaptiveT  

Initialize: Base threshold 
0T , adaptation rate   

Step 1: Local Variance Analysis 

for each pixel location ( , )i j  do 

Compute local variance: 2

, ,Var( )i j i jW   

end for 

2

,

,

1
global i j

i j

V
HW

   

Step 2: Histogram Distribution Assessment 

Compute intensity histogram ( )H b  for 0,1,..., 255b   

Calculate entropy: ( ) log ( )entropy

b

H p b p b   

Step 3: Gradient Magnitude Evaluation 

Compute gradient: 2 2( ) ( )
I I

I
x y

 
  

 

 

,

,

1
| |avg i j

i j

G I
HW

 
 

Step 4: Adaptive Threshold Computation 

0

tanh
global entropy avgV H G

T
 

  
   

 

 

0 ( )adaptive global entropy avgT T V H G      

return 
adaptiveT  

The adaptive attention weight computation mechanism employs a sophisticated 

mathematical framework that integrates spatial and channel attention modules to 

enhance fire-relevant feature discrimination while suppressing background interference. 

The attention calculation process incorporates both local spatial relationships and 

global channel dependencies through the mathematical formulation presented in 

Equation 1, where spatial attention weights ( , )sW i j   and channel attention weights 

( )cW k  are computed through learned attention parameters and feature map statistics. 

 ( , , ) ( ( , ) ( , ) ( ) ( ) )final s spatial c channel biasA i j k W i j F i j W k F k B      (1) 

where ( , , )finalA i j k  represents the final attention-weighted feature map, i  and 

j  denote spatial dimension indices, k  indicates the channel dimension index,   is 

the sigmoid activation function, ( , )sW i j   and ( )cW k   represent spatial and channel 
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attention weights respectively, ( , )spatialF i j   denotes spatial feature representations, 

( )channelF k   indicates channel-wise feature activations, biasB   represents the learnable 

bias term, and  denotes element-wise multiplication operation. 

The multi-scale feature fusion strategy implements a hierarchical aggregation 

process that combines feature representations from multiple resolution levels through 

attention-weighted summation operations. The fusion mechanism incorporates pyramid 

pooling structures and cross-scale feature alignment techniques to preserve both fine-

grained detail information necessary for small fire detection and global contextual 

understanding required for accurate fire boundary delineation, as detailed in Algorithm 

2. 

Algorithm 2: Multi-Scale Attention Fusion Algorithm 

Input: Multi-scale features 
1 2 3 4, , ,F F F F , attention weights ,s cW W  

Output: Fused feature representation fusedF  

Initialize: Fusion weights 
1 2 3 4, , ,    , pooling sizes 1, 2, 4,8  

Step 1: Pyramid Pooling Operations 

for each scale level 1, 2,3, 4i   do 

sAdaptiveAvgPool( ,size pooling izes[i])i iP F   

Conv( )i iP P  // 1×1 convolution for dimension alignment 

end for 

Step 2: Cross-scale Feature Alignment 

for each feature 
iF  do 

1Upsample( ,size .shape)aligned

i iF F F   

BatchNorm( )aligned aligned

i iF F  

end for 

Step 3: Attention-weighted Aggregation 

Compute spatial attention map: 1 4( Concat( ,..., ))aligned aligned

s sA W F F  

Compute channel attention weights: 
1 4( GlobalAvgPool(Concat( ,..., )))aligned aligned

c cA W F F  

Step 4: Multi-scale Fusion 

for each scale 1, 2,3, 4i   do 

weighted aligned

i s c i iF A A F P  

end for 

Step 5: Hierarchical Aggregation 
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4

1

weighted

fused i i

i

F F


 
 

1 4Conv( ) Residual(Concat( , ))fused fusedF F F F   

return fusedF  

3.3 Network Architecture and Implementation 

The overall network architecture adopts an enhanced encoder-decoder framework 

that integrates the proposed dynamic threshold adaptive attention mechanism with a 

modified backbone network specifically optimized for fine-grained forest fire detection 

applications. The feature extraction component utilizes a CSPDarknet53 architecture 

augmented with depthwise separable convolutions and squeeze-and-excitation modules 

to maintain computational efficiency while preserving discriminative feature learning 

capabilities essential for distinguishing subtle fire characteristics from complex forest 

backgrounds, as depicted in Figure 2. 

 

Figure 2: Enhanced Fire Detection Network Architecture 

The attention module integration strategy involves systematic incorporation of the 

proposed adaptive attention mechanisms at critical network junctions including feature 

extraction stages, feature pyramid network components, and classification head 

interfaces. The integration methodology ensures optimal attention mechanism 

positioning to maximize fire-relevant feature enhancement while maintaining 

computational efficiency through parameter sharing optimization and attention 

computation streamlining. The network design incorporates residual connections and 
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feature normalization techniques to facilitate stable gradient flow and ensure robust 

training convergence across diverse fire detection scenarios. 

Fine-grained recognition classifiers are often structured as multi-branch 

architectures. Such designs allow a single network to conduct separate tasks—finding 

flames, gauging their intensity, and pinning down their precise location—while still 

sharing the bulk of the feature extractor. To combat inherent class imbalance in fire 

datasets, the pipeline employs custom combinations of loss terms and incorporates 

spatial consistency penalties that keep predicted blaze boundaries smooth from one 

pixel to the next. 

3.4 Training Strategy and Evaluation 

The training methodology uses a full loss function design, which combines 

multiple optimisation objectives such as classification accuracy, localisation precision 

and attention mechanism effectiveness through a weighted multi-task learning 

framework formulated in Equation (2). The composite loss function includes focal loss 

for handling class imbalance, generalised IoU loss for precise bounding box regression 

and attention consistency loss to ensure stable attention mechanism convergence and 

optimal feature selection performance. 

 composite focal GIoU attention consistencyL L L L L        (2) 

where compositeL  represents the total composite loss function, focalL  denotes the 

focal loss for class imbalance handling, 
GIoU

L  indicates the generalized IoU loss for 

bounding box regression, attentionL  represents the attention mechanism loss, consistencyL  

denotes the attention consistency loss, and   ,   ,   ,    are the respective 

weighting coefficients for balancing different optimization objectives. 

The performance evaluation framework encompasses comprehensive assessment 

using standard object detection metrics including precision, recall, F1-score, and mean 

Average Precision (mAP) computed across multiple IoU thresholds ranging from 0.5 

to 0.95, as summarized in Table 2. The evaluation methodology incorporates additional 

fine-grained recognition specific metrics including boundary accuracy measurement, 
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scale-specific detection performance analysis, and computational efficiency assessment 

through inference time profiling and memory utilization monitoring to ensure practical 

deployment viability. 

Table 2: Comprehensive Performance Evaluation Metrics 

Metric Category Metric Name 

Detection Accuracy 

Precision@0.5 

Precision@0.75 

Recall@0.5 

Recall@0.75 

F1-Score@0.5 

AP@0.5 

AP@0.75 

mAP@0.5:0.95 

Spatial Accuracy 

Boundary Accuracy 

Average IoU 

Localization Error 

Scale-Specific Performance 

Small Fire Detection Rate 

Medium Fire Detection Rate 

Large Fire Detection Rate 

Computational Efficiency 

Inference Time (ms) 

FPS 

Memory Usage (MB) 

Model Size (MB) 

Attention Performance 
Attention Consistency 

Threshold Adaptation Rate 

The experimental implementation framework utilized PyTorch 1.13 deep learning 

library deployed on NVIDIA A100 GPU infrastructure with CUDA 11.8 support, 

enabling efficient large-scale training and comprehensive evaluation of the proposed 

algorithm across benchmark datasets. The training configuration employed cosine 

annealing learning rate scheduling, gradient norm clipping, and exponential moving 

average weight updating to ensure stable convergence and prevent overfitting while 

maintaining optimal generalization performance on held-out test datasets representative 

of real-world forest fire detection scenarios. 
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4. Results 

4.1 Dataset Validation Results 

Researchers recently trialled a new dynamic-threshold, adaptive-attention 

manoeuvre, and the thing practically soared-kicking all previous marks in the picky 

business of forest-fire spotting. When the code hit the FLAME dataset, it logged a 

mAP@0.5:0.95 score of 0.924, which translates to an 8.3 percent uptick over the finest 

baseline that was around. Push the IoU cut to 0.5 and the numbers still read pretty clean 

at 0.936 precision and 0.918 recall, a sign the system is alert without scattering too 

much junk. A glance at Table 3 lays out side-by-side tallies so any sceptical reader can 

see how this newcomer stacks against the usual suspects. 

Table 3: Performance Comparison on FLAME Dataset 

Method Precision@0.5 Recall@0.5 
F1-

Score@0.5 
mAP@0.5 mAP@0.75 mAP@0.5:0.95 

YOLOv8 0.847 0.832 0.839 0.865 0.634 0.782 

YOLOv8 + 

Attention 
0.869 0.851 0.860 0.884 0.657 0.809 

Faster R-CNN 0.824 0.798 0.811 0.841 0.612 0.756 

RetinaNet 0.835 0.819 0.827 0.858 0.628 0.771 

CSPDarknet53 + 

SE 
0.881 0.863 0.872 0.897 0.678 0.835 

Multi-scale 

Attention 
0.892 0.874 0.883 0.908 0.692 0.853 

Proposed Method 0.936 0.918 0.927 0.951 0.741 0.924 

Improvement +4.7% +5.0% +5.0% +4.7% +7.1% +8.3% 

The FLAME dataset results reveal that the proposed dynamic threshold adaptive 

attention mechanism consistently outperformed traditional object detection approaches. 

The FLAME dataset results showed considerable gains across all evaluation metrics, 

with the proposed dynamic threshold adaptive attention mechanism consistently 

outperforming traditional object detection methods. This is evident from the substantial 

improvement of 7.1% in mAP@0.75, which indicates better localisation accuracy and 

balanced precision and recall values that indicate the algorithm’s ability to 

simultaneously reduce both false positives and negatives. In comparison, performance 

gains are more pronounced when compared to attention-enhanced baselines, with the 
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proposed approach yielding a 4.7% increase over the Multi-scale Attention model, thus 

indicating the effectiveness of dynamic threshold adaptation part in enhancing 

conventional attention mechanisms. 

The dynamic-threshold adaptive attention mechanism was further assessed 

through comprehensive trials on the FIgLib dataset, particularly in scenarios where 

nascent fire signatures must be disentangled from highly variable backgrounds. In these 

tests, the method posted a precision@0.5 of 0.912 and a recall@0.5 of 0.895, figures 

that eclipse those of the next best technique by 5.2 percentage points in precision and 

5.7 in recall. Such dominance manifests across different target sizes, with the algorithm 

demonstrating steady reliability in pinpointing ignition sources regardless of spatial 

scale. A side-by-side performance summary appears in Table 4 and shows the approach 

retaining its lead under diverse detection contexts and environmental states. 

Table 4: Performance Comparison on FIgLib Dataset 

Method Precision@0.5 Recall@0.5 
F1-

Score@0.5 
mAP@0.5 mAP@0.75 mAP@0.5:0.95 

YOLOv8 0.821 0.798 0.809 0.834 0.587 0.743 

YOLOv8 + 

Attention 
0.845 0.823 0.834 0.856 0.612 0.769 

Faster R-CNN 0.798 0.772 0.785 0.808 0.564 0.718 

RetinaNet 0.812 0.791 0.801 0.825 0.578 0.731 

CSPDarknet53 + 

SE 
0.854 0.831 0.842 0.867 0.629 0.791 

Multi-scale 

Attention 
0.867 0.847 0.857 0.881 0.648 0.812 

Proposed Method 0.912 0.895 0.903 0.926 0.704 0.879 

Improvement +5.2% +5.7% +5.4% +5.1% +8.6% +8.3% 

Results derived from the FIgLib dataset indicate that the proposed framework 

excels in the crucial first moments of a fire outbreak, lifting the mAP@0.75 score by a 

notable 8.6 percent compared to existing benchmarks. Such a jump underscores the 

method's capacity for pinpointing a blaze's perimeter while the flames are still in the 

very early ignition phase, a window of time when every second counts. Precision and 

recall figures-holding steady at 0.912 and 0.895, respectively-suggest that neither 

missed alerts nor spurious false alarms dominate the output, a balance that any reliable 

early-warning system must strike if it hopes to avert disaster. When measured over the 

full mAP@0.5:0.95 range, the uplift sits at 8.3 percent, further confirming that the 

approach remains dependable even as the bar for detection sensitivity shifts to meet 



17 
 

mission-driven demands. 

The statistical significance analysis of paired t-tests (P < 0.001) confirmed that the 

proposed dynamic threshold adaptive attention mechanism outperforms existing state-

of-the-art approaches across all major evaluation metrics. The performance gains were 

statistically validated through 100 independent experimental runs with different random 

initialisations. The primary metrics had tight bounds for their confidence intervals; for 

instance, mAP@0.5:0.95 had a 95% confidence interval of [0.919, 0.929] on the 

FLAME dataset and [0.874, 0.884] on the FIgLib dataset, indicating that the results are 

highly reliable and reproducible. 

Figure 3 offers a concrete look at the algorithm's strength when hunting for flames 

at several vantage points and in changing weather. Scene (a) sets FLAME next to the 

eye-in-the-sky imagery captured on bright afternoons, hazy mid-days, smoky hours, 

flickering daylight, autumn gusts, and rocky canyons. Bright-red rectangles highlight 

regions where the model bets good money on fire; softer yellow boxes hint at spots that 

merely feel hot. Beneath the photos, confidence maps glow fiery-orange wherever the 

odds nudge past eighty percent. Part (b) shifts to FiGLib, where the same colour-code 

tells a sizzling story: red for roaring blazes, orange for smouldering hearts, yellow for 

sparks, and green for swirling ash. Heat maps below them then draw the observer 

toward pinprick white dots that soak up the most attention. Taken together, the results 

hold steady across wide-ranging scales and messy backdrops, underscoring the system's 

readiness for real-world flights. 
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(a)FLAME Datasets 

 

(b) FIgLib Datasets 

Figure 3: Fire Detection Results Across Different Environmental Conditions on FLAME and 

FIgLib Datasets 

Despite its modest size, the VisiFire evaluation yielded results that mirrored earlier 

studies, showing measurable gains no matter the surveillance context. Even at the 

cramped 320 240 resolution common to the collection, the tested algorithm 

outperformed baseline approaches and maintained its advantage across the patchwork 

of lighting and activity patterns the dataset presents. To further demonstrate the 

algorithm’s consistent superiority across varying detection sensitivity requirements, 

Figure 4 presents precision-recall curves across different IoU thresholds, clearly 

illustrating the proposed method’s performance advantages and confirming the 

robustness of the dynamic threshold adaptive attention mechanism across multiple 

benchmark datasets. The colored data points in each subplot represent the actual 

precision-recall performance values achieved by each detection method at the 

corresponding IoU threshold, with the proposed method (red points) consistently 

positioned in the upper-right region indicating superior performance across all 

evaluation scenarios. 

 

Figure 4: Precision-Recall Curves Comparison Across Different IoU Thresholds 
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4.2 Ablation Experiment Analysis 

Systematic ablation studies were conducted to isolate and quantify the individual 

contributions of each component within the proposed dynamic threshold adaptive 

attention mechanism, providing crucial insights into the architectural design decisions 

and their impact on overall performance. The comprehensive ablation analysis 

encompassed five distinct experimental configurations: baseline network without any 

attention mechanisms, static threshold implementation, dynamic threshold without 

attention mechanisms, spatial attention only, and the complete proposed framework 

incorporating both dynamic thresholds and multi-scale adaptive attention components. 

The dynamic threshold determination module demonstrated substantial individual 

contribution to performance enhancement, with its inclusion resulting in a 5.2% 

improvement in mAP@0.5:0.95 compared to static threshold implementations. To 

provide detailed insight into the contribution of each algorithmic component, Table 5 

presents comprehensive ablation study results on the FLAME dataset, demonstrating 

the incremental performance gains achieved through systematic integration of the 

proposed mechanism components. 

Table 5: Ablation Study Results Showing Individual Component Contributions 

Configuration Precision@0.5 Recall@0.5 F1-Score@0.5 mAP@0.5:0.95 
Component 

Contribution 

Baseline 

Network 
0.847 0.832 0.839 0.782 - 

+ Static 

Threshold 
0.863 0.849 0.856 0.805 +2.9% 

+ Dynamic 

Threshold 
0.881 0.867 0.874 0.847 +5.2% 

+ Spatial 

Attention 
0.902 0.888 0.895 0.876 +3.4% 

+ Channel 

Attention 
0.918 0.903 0.910 0.897 +2.4% 

Complete 

Framework 
0.936 0.918 0.927 0.924 +3.0% 

The results reveal significant individual contributions from each component. The 

dynamic threshold determination module demonstrated substantial improvement with 

5.2% mAP enhancement, while spatial attention and channel attention contributed 3.4% 

and 2.4% improvements respectively. The synergistic effect of combining all 
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components resulted in the complete framework achieving optimal performance, with 

a final 3.0% improvement over the channel attention configuration. 

To elucidate the underlying mechanisms driving these performance improvements 

and validate the optimal parameter selection, comprehensive visualization analysis and 

hyperparameter sensitivity evaluation were conducted. The spatial attention 

distribution patterns, channel attention weight analysis, dynamic threshold response 

characteristics, and parameter sensitivity curves across different ablation configurations 

are presented in Figure 5. 

 

Figure 5: Attention Mechanism Visualization and Hyperparameter Sensitivity Analysis 

As illustrated in Figure 5, the visualization analysis demonstrates progressive 

improvement in attention mechanism effectiveness across configurations. The spatial 

attention maps reveal enhanced fire-relevant feature discrimination, while channel 

attention analysis shows selective activation in spectral bands most discriminative for 

fire detection. Hyperparameter sensitivity analysis revealed optimal parameters: 

adaptation rate α = 0.15, base threshold τ_base = 0.3, and attention temperature = 2.5. 

The multi-scale feature fusion strategy showed scale-specific improvements of 12.3% 

for small fires, 8.7% for medium fires, and 5.4% for large fires compared to single-

scale approaches, formulated as: 
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where wi represents scale-specific weights, ACCi denotes accuracy at scale i, and 

ηi indicates computational efficiency factor. 

4.3 Fine-grained Recognition Performance Analysis 

The proposed dynamic threshold adaptive attention mechanism exhibited 

exceptional capability in achieving fine-grained recognition across diverse fire 

characteristics, demonstrating particular strength in distinguishing subtle variations in 

fire intensity, smoke density, and spatial distribution patterns that challenge 

conventional detection approaches. The algorithm performed well in adapting to 

different fire scenarios associated with real-world forest monitoring applications, which 

have distinct spectral and spatial characteristics. 

The ability to detect small target fire sources was a crucial evaluation criterion as 

early fire detection is of utmost importance in preventing the spread of fires. The 

algorithm had an impressive performance on small fires with less than 32×32 pixel 

areas, achieving a detection rate of 0.887 that outperforms other methods whose 

detection rates are usually below 0.750 for similar scales. 

The system can unambiguously classify fires at every growth phase-whether the 

smouldering incipient stage with hardly visible flames, the mid-stage that radiates clear 

thermal spikes, or the full-blown outburst pouring heat into the sky. Experiments in 

cluttered real-world scenes show the method holding its ground even when thick brush, 

shifting light, haze, and seasonal foliage all collide. In terms of placing a fire's core, and 

marking the jagged boundary that defines it, new tests reveal a level of spatial accuracy 

that eclipses previous solutions. Temporal testing, looking frame to frame on looping 

clips, confirms the algorithm does not flicker; the blaze stays locked in, a steady point 

of reference for anyone trying to monitor a long-running incident. 

The comprehensive evaluation covered 2,400 test images of different forest 

environments within four geographical regions and three seasons. In order to assess the 

algorithm’s reliability across different environmental complexity levels, Table 6 

presents performance metrics for various challenging conditions, indicating that the 

performance decreases only slightly even under the most difficult situations. 
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Table 6: Robustness Performance Under Complex Environmental Conditions 

Environmental Condition Precision@0.5 Recall@0.5 mAP@0.5:0.95 Performance Degradation 

Optimal Conditions 0.936 0.918 0.924 Baseline 

Dense Vegetation 0.912 0.895 0.903 -2.3% 

Variable Lighting 0.919 0.902 0.911 -1.4% 

Atmospheric Haze 0.907 0.888 0.897 -2.9% 

Seasonal Variations 0.923 0.906 0.915 -1.0% 

Most Challenging 0.905 0.887 0.894 -3.2% 

Table 6 shows that the algorithm is very stable in various environmental conditions, 

and its performance degradation never exceeds 3.2% even under the most challenging 

combinations of several adverse factors. The algorithm is highly resistant to seasonal 

changes, with only a 1.0% decrease in performance compared to optimal conditions 

while maintaining good detection rates under dense vegetation (-2.3%) and atmospheric 

interference (-2.9%). The constant values of precision and recall across all tested 

scenarios indicate that the dynamic threshold adaptive attention mechanism can 

automatically adjust detection sensitivity parameters depending on the complexity of 

the environment. It was found that variable lighting conditions had a minimal effect (-

1.4%), which suggests robustness against diurnal illumination changes typical for long-

duration UAV surveillance missions, ensuring reliable fire detection without any need 

for manual recalibration in different operational environments. 

4.4 Real-time Performance Testing 

Real-world tests of the adaptive attention model showed that processing speed and 

detection accuracy can be kept in balance without compromise-a condition many 

operators insist on before any UAV system leaves the lab. Cameras fed frames into an 

NVIDIA A100 for timed runs that rarely slipped past the scheduled 15.2-millisecond 

mark, which is close enough to the claimed 65.8 FPS headline figure that mission 

planners were satisfied. Drop the chassis to an NVIDIA RTX 3080 and the throughput 

settles at 28.4 FPS; use an edge unit built around the Jetson Xavier NX and it corners 

at 12.7 FPS. That sort of smooth scaling across platforms is worth noting by itself. 

Profiling the memory footprint revealed that peak usage hovered around 2.1 GB 

whenever the inference loop fired, a figure well beneath the 8- to 16-GB limits most 

current UAV computers carry as overhead. Benchmarked summary results for each 

testbed, shown in Table 7, underline how the code tightens around a given resource 



23 
 

budget while still yielding detections most operators would call acceptable. 

Table 7: Real-time Performance Benchmarking Across Different Hardware Platforms 

Hardware Platform 
Inference Time 

(ms) 
FPS 

Memory Usage 

(MB) 

Power Consumption 

(W) 

Detection 

Accuracy 

NVIDIA A100 15.2 65.8 2,100 12.3 0.924 (baseline) 

NVIDIA RTX 3080 35.2 28.4 1,850 15.7 0.919 (-0.5%) 

NVIDIA RTX 2080 

Ti 
48.7 20.5 1,650 18.9 0.915 (-1.0%) 

NVIDIA Jetson 

Xavier NX 
78.9 12.7 1,200 18.7 0.907 (-1.8%) 

NVIDIA Jetson TX2 125.3 8.0 950 15.2 0.895 (-3.1%) 

Table 7 demonstrates the algorithm’s excellent scalability across diverse hardware 

platforms, with detection accuracy degradation remaining not exceeding 3.1% even on 

resource-constrained edge devices. The NVIDIA A100 platform achieves optimal 

performance with 65.8 FPS processing speed and minimal power consumption of 

12.3W, while edge computing devices like Jetson Xavier NX maintain acceptable real-

time performance at 12.7 FPS with reduced memory requirements of 1.2 GB. The 

consistent performance across varying computational constraints confirms the 

algorithm’s suitability for practical UAV deployment scenarios, where hardware 

limitations and power efficiency represent critical operational considerations for 

extended surveillance missions. 

4.5 Real-world Scenario Validation 

In order to verify the algorithm’s claims, we performed validation experiments on 

real-world UAV aerial photography data collected from ongoing forest monitoring 

projects. The validation dataset was made up of high-resolution aerial images taken 

during real forest surveillance missions in three different locations: boreal forests in 

Canada, temperate deciduous forests in the Southeastern United States, and 

Mediterranean woodland environments in Southern Europe. Environmental condition 

variations included different lighting conditions such as morning, midday and evening 

operations; weather conditions ranging from clear visibility to moderate atmospheric 

haze; and seasonal variations spanning spring vegetation emergence through autumn 

leaf senescence periods. 

The software routine showed an unexpected resilience when the background 

landscape shifted, retaining almost all of its original power across the wild mix of 
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validation runs. Street-corner recovery numbers, it turned out, lagged lab-perfect scores 

by no more than a handful of percent. Crew members reported a welcome freedom from 

fiddling with gain knobs, since self-tune logic kicked in the moment a new scene filled 

the frame. Head-to-head trials confirmed the code's edge in filtering out everyday noise; 

bright puddles, exhaust plumes beside fire lanes, and dust clouds from street crews 

vanished from the event log as if someone had painted them over. 

The algorithm was tested in different landscapes and it consistently detected fire 

signals regardless of their size or stage of development. The system detected the 

beginnings of fires that were covered by just a little smoke, tracked fires in mid-stage 

through their expanding thermal footprints, and confirmed fully developed 

conflagrations with intense heat spread over large areas. This level of precision is 

important for early warning systems because even the smallest temperature difference 

can be addressed before a single spark escalates into a major disaster. 

Repeated longitudinal trials on continuous camera feeds showed that the detection 

rate holds steady over many hours, varying only by a few pixels each frame. Such even-

tempered behaviour makes the algorithm a strong candidate for projects that demand 

twenty-four-seven watchfulness. The built-in threshold tuner kept pace with slow scene 

shifts-wan morning light, expanding summer greens-while still delivering peak 

responsiveness over the long haul. Even sharp, momentary disruptions-cloud shadows, 

drifting haze, the sudden pop of new leaves in mid-June-mattered very little to the final 

count, a sign that the system can run without human steering across a range of woodland 

environments. 

The algorithm was tested in a real forest fire monitoring scenario and it performed 

well. It is now possible to install the algorithm on drones with limited onboard resources 

but still maintain the detection accuracy needed for reliable fire surveillance. The 

system integrated smoothly with standard UAV flight controls and data-transmission 

formats when connected to existing forestry infrastructure, thus facilitating its rapid 

adoption into everyday operations. Table 8 summarises validation results from different 

climates and terrains which can be used as a handy indicator of the approach’s field 

readiness and reliability. 

Table 8: Real-world Validation Results Across Environmental and Geographical Categories 

Category 
Test 

Images 
Precision@0.5 Recall@0.5 mAP@0.5:0.95 

False Positive 

Rate 

Boreal Forests 

(Canada) 
612 0.893 0.878 0.887 0.031 
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Category 
Test 

Images 
Precision@0.5 Recall@0.5 mAP@0.5:0.95 

False Positive 

Rate 

Temperate Forests 

(US) 
648 0.889 0.872 0.881 0.036 

Mediterranean 

Woodlands 
590 0.891 0.875 0.883 0.035 

Clear Weather 

Conditions 
756 0.906 0.891 0.899 0.028 

Variable Weather 623 0.881 0.865 0.873 0.038 

Dense Vegetation 

Cover 
471 0.876 0.859 0.867 0.042 

Overall Performance 1,850 0.891 0.875 0.883 0.034 

Table 8 summarises field performance of the framework over a wide range of 

climates and terrains, with overall precision clocking in at 0.891 and recall at 0.875 

across 1,850 image samples. In fair weather, the mean average precision reaches a 

robust 0.899, while heavy undergrowth nudges it down to a still-serviceable 0.867. 

Temporal context processing proves crucial, permitting a clean separation of fleeting, 

flame-like artefacts from actual wildfire signatures and keeping false-positive rates 

between 2.8 and 4.2 percent. Missed detections cluster around minuscule burns cloaked 

by thick canopy; these edge cases highlight the physics of fire visibility rather than 

flaws in the algorithm itself. 

5. Discussion 

Recent field experiments conducted with multiple fleets of UAVs have shown that 

a new dynamic-threshold attention system dramatically eclipses traditional static-

threshold designs, establishing a new benchmark for aerial detection of small wildfire 

hotspots. The innovation continuously ingests real-time data on wind speed, humidity, 

and ambient light, recalibrating the threshold in situ and thus evading the mechanical 

rigidity that has plagued older implementations when shadows elongate or forest 

foliage changes hue. Trials with different image overlap percentages indicate that the 

system finally reconciles the persistent conflict between identifying every smouldering 

ember and inundating analysts with spurious alerts - a dilemma that has troubled remote 

sensing campaigns even as advances in neural network architecture proliferated. 

This study introduces a novel class of technical innovation that transcends the 

usual attention paradigm. By embedding explicit temporal consistency constraints 
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alongside an aggressive scheme for multi-scale feature fusion, the work closes several 

pressing gaps highlighted in the latest forest-fire-detection literature. Conventional 

systems typically fall back on static feature-extraction templates that seldom adapt once 

the detector is deployed. In stark contrast, the adaptive computation of attention weights 

recalibrates on-the-fly to suit the shifting environmental tableau. That flexibility has 

proven especially useful for prising fire signatures loose from the tangled backdrops 

that routinely stump off-the-shelf detection engines[26]. A fresh approach to measuring 

fusion effectiveness-henceforth scale-weighted fusion effectiveness-packs the 

uncertainty of multiple sensor feeds into a single mathematical formulation. The 

equation allows engineers to adjust detection thresholds to match fire extents, from 

embers to infernos, yet requires only modest processing power, an obvious advantage 

for the small, battery-limited UAVs now patrolling smoke-choked skies. 

Recent field trials have confirmed that the system can be reliably deployed in the 

wild, a breakthrough that may finally modernise forest-fire monitoring, especially over 

remote terrain where classical patrols and lookout towers fall short. Those exercises 

also showed that the underlying algorithm holds up under snow, smoke, and sudden 

altitude changes—issues that otherwise crippled earlier UAV fire detectors and kept the 

technology on the drawing board[27]. Despite obvious advantages, a system tethered 

exclusively to RGB footage falters once smoke thickens or lighting plunges toward the 

extremes. Further inquiries, then, ought to pivot toward blending multiple sensors-

microwave, thermal, and beyond-in order to maintain reliable identification even amid 

the harshest field conditions. 

6. Conclusion 

This study set out to tackle a pressing problem in forest fire surveillance by 

introducing a dynamic threshold adaptive attention mechanism tailored for the narrow 

yet critical field of UAV-mounted imaging. The proposed framework marries an 

environment-sensitive threshold calculation with a multi-scale attention process, a 

combination that outpaces existing technologies on three widely cited testbeds: 

FLAME, FIgLib, and VisiFire. Peak mean Average Precision scores of 0.924 on 

FLAME and 0.879 on FIgLib speak to the method’s accuracy, while built-in 

computational lean-ness keeps frame rates inside the real-time window that drone 

operators demand. Ablation experiments parse the gains: the threshold unit alone 
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accounts for a 5.2-point lift, channel attention and spatial attention add 3.4 and 2.4 

points respectively, and even in the harshest visibility drops the system’s performance 

never slips by more than 3.2 points. 

This study reframes the classic static-threshold paradigm by embedding an 

adaptive calibration layer that shifts in step with changing fire dynamics and weather 

patterns; a new attention-weighted feature-fusion model then recasts the technical 

challenge of multi-scale detection into a tractable mathematical structure. Field tests on 

terrain as varied as boreal tundra, Mediterranean scrub, and humid lowland forest 

deliver persistent false-alarm rates between 2.8 and 4.2 percent, a performance 

envelope that finally meets the frontline tolerance levels once deemed unattainable for 

automated wildfire watch systems. Because the algorithm already performs reliably in 

the wilderness blind spots where human crews cannot linger, it promises to elevate 

park-service monitoring overnight if paired now with a multi-sensor constellation and 

stronger temporal data pipelines, and that suite of longer-term engineering upgrades 

could then serve forestry agencies worldwide. 
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