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Abstract

Purpose: This study addresses critical challenges in fine-grained forest fire recognition
from UAV aerial photography by developing a dynamic threshold adaptive attention
mechanism capable of real-time environmental adaptation and multi-scale fire
signature detection across varying conditions.

Methodology: The proposed framework integrates three core components: dynamic
threshold determination module, adaptive attention weight calculation system, and
hierarchical feature fusion network. The algorithm employs real-time analysis of local
image statistics and environmental parameters to adaptively adjust detection sensitivity.
Comprehensive evaluation was conducted on three benchmark datasets (FLAME,

FIgLib, VisiFire) using standard object detection metrics and computational efficiency
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assessments.

Findings: The algorithm achieved exceptional performance with mean Average
Precision (mAP@0.5:0.95) of 0.924 on FLAME dataset and 0.879 on FIgLib dataset,
representing substantial improvements of 8.3% over best-performing baseline methods.
VisiFire dataset evaluation corroborated consistent performance improvements across
diverse surveillance scenarios. Ablation studies revealed individual component
contributions, with dynamic threshold determination providing 5.2% enhancement.
Real-time processing capabilities achieved 65.8 FPS on NVIDIA A100 with minimal
performance degradation across diverse hardware platforms.

Conclusion: The dynamic threshold adaptive attention mechanism successfully
overcomes limitations of static threshold systems, demonstrating robust adaptability to
environmental variations while maintaining computational efficiency suitable for UAV
deployment scenarios.

Practical Implications: This algorithm enables deployment on resource-constrained
UAV platforms for automated forest fire monitoring, providing reliable early warning
capabilities essential for preventing catastrophic wildfire spread across diverse
geographical and environmental conditions.

Keywords: Dynamic Threshold; Adaptive Attention Mechanism; UAV Aerial

Photography; Forest Fire Detection; Fine-grained Recognition

1. Introduction

Wildland fire is still one of the most deadly disasters that people face, destroying
entire landscapes and turning meadows into burnt earth. The economies are hit twice as
hard by firefighting costs and destroyed timber while an emergency siren walils,
warning animals, crops and humans to evacuate the delta[1]. Record after record falls
almost every summer as blazes sweep through woods and brush. Scholars trace the
trend to both a warming atmosphere and the steady spread of roads, farms, and towns
into the wildland edge. Fresh alarms now ring for surveillance networks that can spot a
spark within minutes and alert firefighters long before a small glow turns into a raging
front[2]. Standard methods of monitoring forest fires have certain weaknesses. These
include limited vision, slowness in the process and the fact that it can be hindered by
weather changes or rugged topography[3]. The challenge of heterogeneous fuel loads,
variable weather, and uneven topography forces researchers to invent new detection
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methods capable of spotting a flare-up, cross-checking its size, and streaming that
information to a control room within seconds. Systems of that sort would have to
function equally well over wind-swept grasslands, shaded conifer stands, and even the
canyons that slice between them.

Advances in drone technology now fuse seamlessly with cutting-edge computer-
vision techniques, offering wild-land managers an entirely new lens for spotting tree-
top blazes. The airborne platform’s mobility, nimble access to hard-hit ridges, and
constant data stream rewrite the old rules of first-light inspection[4] Attention-centred
deep-learning frameworks have burst onto the scene, pushing fire-detection accuracy
and processing speed to levels that once seemed unreachable. Researchers in both
industry labs and university workshops now cite these architectures almost in the same
breath as the smoke alarms mounted on our ceilings[5, 6]. Nevertheless, current
detection frameworks still struggle to deliver the promised level of fine-grained
recognition. Small ignition points-and the dense, mottled scenery of a forest-generate a
host of problems, not to mention the shifting light, smoke, and shadow that can turn an
obvious fire into a false negative in seconds[7]. Balancing speed and precision in object
detection is far from routine. Off-the-shelf algorithms tend to collapse as backgrounds
shift or as the cameras swing from high midday light to the wash of dusk. Even modest
power caps-common on small drones-derail many promising pipelines|8].

Extending earlier investigations into  attention-driven fire-detection
architectures[9, 10], the present work unveils a dynamic-threshold mechanism tailored
for the demanding context of fine-grained forest-fire classification from UAV imagery.
The strategy is characterised by a real-time threshold calibration that changes with
environmental cues, and when combined with multi-scale attention nodes, increases the
system’s sensitivity to flame signatures which vary greatly in size and luminosity[11].
Merging the individual processing modules produces a system that identifies flame
signatures in a cluttered, colour-rich forest canopyscape far better than any earlier setup.
What's more, the computational load remains comfortably within the power envelope
of a hovering drone. Field experiments show the improvement is not illusory; the
revised pipeline handles the sudden shifts in light and the moving curtains of smoke
that usually thwart airborne observers. Taken together, these advances nudge fully
automated wildfire monitoring well beyond the modest performance thresholds that
have long constrained the field[12].

The current investigation addresses the longstanding problem of pinpointing



exactly where small, yet dangerous, pockets of flames are hiding in dense tree cover.
To do so, it proposes a new adaptive attention framework that adjusts its threshold in
real time while sifting through UAV-captured aerial images. The project pursues three
interrelated aims: (1) Researchers are designing a threshold-calibration framework that
continuously adjusts to fluctuations in background noise, visibility, and combustion
behaviour, (2) The implementation of multi-scale attention mechanisms that can detect
fire signs at different spatial scales and luminosity levels, (3) maximising detection
fidelity without overloading the limited processing power of small, battery-bound
unmanned aerial vehicles, and (4) demonstrating robust performance across diverse
environmental conditions including variable lighting, smoke density, and complex

forest backgrounds.

2. Related Work

In the past, forest firefighting relied on human eyes squinting from lookout towers
or pilots circling in small aircraft. These were scenes of equal parts grit and guesswork.
Such traditional setups took too much time because even the most alert ranger could
see only what rose directly before them, and smoke, hail, or sheer distance turned
certainty into a fog of estimates. However, once drones entered the picture, everything
tilted on its axis; lightweight cameras that buzz overhead feast on live video, zip toward
burned-out trails, and widen the watchers’ horizon far past any tower or line-of-sight
scan[13]. Contemporary unmanned aerial vehicles now carry sensor suites that would
have seemed fantastical a generation ago. The payload typically bundles high-
resolution RGB cameras, infrared imagers, and multispectral scanners tuned to isolate
heat signatures in several spectral bands. Together, these instruments outperform
traditional satellite platforms while remaining far easier on local budgets. Because the
aircraft can remain airborne for hours and revisit the same tract of woodland repeatedly,
they deliver a constant stream of data that flags smouldering hotspots almost the
moment they appear. Such early warnings give firefighting crews the head start they
need to contain a flare-up before it snowballs into a regional disaster.

Deep learning techniques have reshaped the landscape of fire detection, and
convolutional neural networks now stand at the forefront of research into automated
flame recognition. In parallel, the progression of object-detection frameworks-
especially the successive YOLO (You Only Look Once) versions-has proven that
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systems can spot fires nearly instantaneously without taxing the limited processors
found on SUAS[14, 15]. Scholars and practitioners have observed the YOLO
framework progress from its original 2015 release through a growing series of revisions,
the latest publicised one being YOLOVS. These newer incarnations deliberately address
persistent problems-small object visibility and reliable multi-scale feature mapping-that
frequently arise in surveillance scenarios, early-stage fire monitoring included[16, 17].
Scholars are currently investigating hybrid neural architectures that blend diverse deep-
learning branches. Early results suggest these ensemble frameworks not only strengthen
detection reliability but also maintain the sub-second latency critical for time-sensitive
crisis management|[18].

Researchers have increasingly turned to attention-based strategies in fire-detection
technology, a shift that permits systems to recognise minute blaze signatures even when
cluttered forest scenery shifts with the weather. In practice, channel-based attention
layers hone in on flame-related wavelengths, quietly dampening extraneous hues;
multiple experiments lately report a striking boost in precision whether the trial site is
wind-whipped, rain-soaked, or sun-drenched[19]. The surge in transformer-based
attention architectures has reignited age-old inquiries into the ways multilayer networks
collect, mix, and exploit signals dispersed throughout an image. Fresh laboratory results
indicate that merging standard convolutional pipelines with attention blocks keeps
detailed fire signatures intact while simultaneously embedding the broader scene
context required for dependable identification[20]. Recent developments pair advanced
attention mechanisms with multi-scale feature fusion strategies, allowing detection
systems to track fire signatures at varied spatial resolutions without excessive
computational overhead. The combination preserves both detail and performance by
selectively weighting features according to their scale and relevance in real time[21].

Recent studies have focused on the narrow bandwidth and power budgets that
typically hinder drone surveillance, prompting engineers to prototype streamlined
neural nets that sacrifice as little accuracy as possible in flight. Meanwhile, teams
assembling custom image collections for airborne flame spotting cannot avoid trekking
through smoky forests and sun-drenched prairies; only that kind of varied record
provides classifiers with the grit they need to generalise when the next blaze sweeps
through a different landscape[22]. Real-time processing capabilities have emerged as a
critical requirement, driving the development of edge computing solutions that enable

on-board processing while maintaining detection accuracy standards necessary for



practical deployment[23].

Dynamic threshold mechanisms now stand at the forefront of fire-detection
research, striving to overcome the inherent rigidity of traditional static thresholds.
Researchers note that these adaptive systems can fine-tune their alerts according to
shifting environmental cues and fluctuating blaze intensities. Work that fuses different
learning techniques-mashing together, for instance, machine-learning classifiers and
statistical filters-suggests that such hybrids vastly enhance early-warning accuracy. By
continuously ingesting real-time weather data, fuel moisture readings, and inputs from
acoustic, optical, and infrared sensors, the mixed-algorithm models adjust their decision
boundaries on the fly, leaving blunt one-size-fits-all thresholds far behind[24]. At
present, multi-modal sensor fusion techniques are being integrated with adaptive
threshold algorithms. This integration is considered a promising avenue to enhance the
robustness of detection, particularly in situations where individual sensor modalities
may offer conflicting or ambiguous information about potential fire events[25].

Although deep learning methods have improved fire detection, there are still many
difficulties such as dealing with different environmental conditions. This is especially
true when the background is a complex forest, there are changing lighting conditions
and the fire sources are small. The current approaches often find it hard to balance
between sensitivity and false positive rate, more so when it comes to phenomena that
look like fires, for example, dust clouds, vehicle exhausts or natural atmospheric
conditions that mimic fire signatures. There’s little research on adaptive threshold
mechanisms; most of these systems use static thresholds which may not be useful in
various environmental conditions and intensities of fires. Furthermore, the integration
of temporal information for improving detection robustness and the development of
truly adaptive attention mechanisms that can dynamically adjust to changing
environmental conditions represent significant research gaps that require innovative

solutions to advance the state-of-the-art in automated forest fire monitoring systems.

3 Research Methodology

3.1 Dataset Selection and Preprocessing

The experimental validation of the proposed algorithm employed widely adopted

benchmark datasets specifically designed for forest fire detection research, ensuring
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reproducibility and fair comparison with existing state-of-the-art methodologies. The
primary dataset utilized in this investigation comprises the FLAME (Fire Luminosity
Airborne-based Machine learning Evaluation) dataset, which contains aerial video
recordings captured through UAV photography during prescribed burning of piled
detritus in Arizona pine forest environments. This dataset provides comprehensive
coverage of fire detection challenges through 966-second duration videos at 29 FPS
with 1280x720 resolution, from which frame-wise annotations enable both
classification and segmentation tasks suitable for evaluating fine-grained recognition
algorithms. The research drew on the Fire Ignition Library (FigLib), a collection of
roughly 24,800 high-resolution wildfire smoke images - each measuring either 1,536
by 2,048 or 2,048 by 3,072 pixels from fixed cameras scattered across Southern
California. Those images chronicle 315 distinct fire outbreaks recorded by 101 separate
vantage points and cover a wide range of lighting and atmospheric settings that are
critical for thoroughly stress-testing new algorithms.

In addition, the team worked with the VisiFire corpus, which consists of 40 short
clips taken at 320 by 240 resolution: 13 show open flames, 21 capture smoke plumes
rising into the sky, 4 display fire on forest canopies, and 2 feature miscellaneous scenes.
From that footage, analysts routinely harvest between 2,500 and 2,684 labelled frames
to train classifiers and check their accuracy, and the complete setup is summarised in
Table 1.

Table 1: Benchmark Dataset Characteristics and Statistics

Dataset FLAME FlgLib VisiFire
Northern Arizona . ) ) )
Source . . HPWREN/UC San Diego Bilkent University
University

. . . . . Various surveillance
Location Arizona pine forest, USA Southern California, USA

locations
Collection Period 2020-2021 June 2016 - July 2021 2007
UAV aerial videos + Fixed-camera image Surveillance videos +
Data Type
extracted frames sequences extracted frames
966-second videos (29 24,800 high-resolution .
. 40 videos; 2,500-2,684
Total Content FPS); 39,375 labeled images; 315 fire
extracted frames
frames sequences, 101 cameras
) Videos: 1280x720;
Resolution 1536x2048, 2048x3072 320%240
Frames: 254x254
MP4 (videos), JPEG .
Format JPEG AVI (videos)

(frames)
Fire/Positive ~19,687 frames (50%) ~12,400 images (50%) ~1,250-1,342 frames
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Samples

Non-
fire/Negative ~19,688 frames (50%) ~12,400 images (50%) ~1,250-1,342 frames
Samples
Training Set 27,562 frames (70%) 17,360 images (70%) 1,750 frames (70%)
Validation Set 7,875 frames (20%) 4,960 images (20%) 500 frames (20%)
Test Set 3,938 frames (10%) 2,480 images (10%) 250 frames (10%)
Data Size ~2.5 GB total Several GB Various sizes
. Early ignition detection;  Real-time surveillance;
Prescribed burns; . . .
40-min sequences (~81  Multiple scenarios; 13
Thermal + RGB data; . . .
Key Features ] . images/fire); Fixed-view  flame + 21 smoke + 4
Frame-wise annotations;
) cameras; Temporal forest smoke + 2 other
UAV perspective )
sequences videos
. Classification, . Fire/smoke detection;
Primary . Smoke detection; Early ] ]
o Segmentation; UAV- o ) Real-time surveillance
Applications . fire ignition detection
based fire detection systems
High-quality UAV data; Large-scale temporal data; Established benchmark;
Advantages Thermal imagery; Real ignition sequences; Diverse scenarios;
Controlled environment Geographic diversity Widely used baseline
Limited to prescribed Low resolution; Limited

o . . Fixed-camera perspective .
Limitations  burns; Single geographic scene variety; Older
only; Smoke-focused

region dataset

The comprehensive data preprocessing pipeline encompassed standardized
procedures essential for optimal model training, incorporating image standardization
through uniform resizing to 640x640 pixel dimensions and pixel intensity
normalization to the [0,1] range to ensure computational consistency while preserving
critical fire signature characteristics. Systematic data augmentation strategies were
implemented to improve model generalization capabilities through geometric
transformations including random rotation within £15° range, horizontal flipping with
50% probability, and scale variations between 0.9-1.1x, alongside photometric
augmentations encompassing brightness adjustment within £10% range, contrast
enhancement between 0.95-1.05x%, and controlled Gaussian noise injection (6=0.01) to
enhance robustness against sensor noise commonly encountered in UAV-based imaging
systems. The preprocessing framework achieved temporal synchronisation by
extracting frames at uniform intervals and partitioning the collection across a
conventional seventy-twenty-ten split. This division left training, validation, and test
subsets disjoint while preserving a balanced mix of fire intensities and environmental

settings within each portion.



3.2 Proposed Algorithm Framework

An innovative dynamic-threshold adaptive attention mechanism has recently been
advanced as a robust solution for the notoriously difficult task of pinpointing small-
scale forest fires in variable terrain. The framework marries context-sensitive threshold
derivation with multi-scale attention routing and is structured around three tightly
coupled modules. A threshold-calibration engine initially adjusts the sensitivity profile
on the fly. An adaptive-attention-weight module then generates site-specific
prominence scores. A tiered-feature-fusion network subsequently blends raw, mid-level,
and high-level signals into a single prediction that regularly surpasses conventional
benchmarks. Figure 1 provides a bird's-eye view of the complete architecture.

UAV Aerial CSPDarknet53

Image input Backbone Network
640*640*3 Feature Extraction

Multi-branch
Classifier
Multi-Scale Features
F1, F2, Fs, Fy -Fire Detection
-Intensity Estimation
-Spatial Localization

Hierarchical Feature
Fusion Network

-Pyramid Pooling
-Cross-scale Alignment
- Attention Weighting Final Output

Dynamic Threshold Adaptive Attention
Determination Weight Calculation

Fire Regions &

- Local Variance -spatial Attention Wq(i.j) Confidence Scores

- Histogram Analysis -Channel Attention W(k)
- Gradient Magnitude -Global Dependencies

Figure 1: Dynamic Threshold Adaptive Attention Mechanism Architecture

A dynamic-threshold-determination mechanism scrutinises the local statistics of
an image and weighs relevant environmental cues before modulating the detection
sensitivity in real time. In that respect, its operation mirrors the process laid out in
Algorithm 1. The threshold calculation methodology utilizes a statistical framework
that combines local variance analysis, histogram distribution assessment, and gradient
magnitude evaluation to determine optimal threshold values that maximize detection
accuracy while maintaining computational efficiency suitable for real-time UAV

deployment scenarios.

Algorithm 1: Dynamic Threshold Computation Process
0 H>XWx3

Input: Image patch | € , environmental parameters E



Output: Adaptive threshold T,

daptive

Initialize: Base threshold T, adaptation rate o

Step 1: Local Variance Analysis

for each pixel location (i, j) do

Compute local variance: o, =Var(W, ;)

end for

1 2
Vglobal = W IZJ: O

Step 2: Histogram Distribution Assessment
Compute intensity histogram H(b) for b=0,1,...,255

Calculate entropy: H ntropy = _Z p(b) log p(b)
b

Step 3: Gradient Magnitude Evaluation

Compute gradient: A,

&

vi= ¢
X" oy

)2

1
Gy =—— S VI
o =gy 2 |

Step 4: Adaptive Threshold Computation

Vglohal + Henlropy + Gavg ]

=q-tanh
y [ TD

Tadaptive = TO + v (Vglobal + H entropy + Gavg )

return T

adaptive

The adaptive attention weight computation mechanism employs a sophisticated
mathematical framework that integrates spatial and channel attention modules to
enhance fire-relevant feature discrimination while suppressing background interference.
The attention calculation process incorporates both local spatial relationships and
global channel dependencies through the mathematical formulation presented in
Equation 1, where spatial attention weights W, (i, j) and channel attention weights

W_ (k) are computed through learned attention parameters and feature map statistics.

Afinal (I’ j! k) = G(T XWS (I’ J) 0 I:spatial (I’ J) +Wc (k) 0 Fchannel (k) + Bbias) (1)

where A, (i, J,K) represents the final attention-weighted feature map, i and
J denote spatial dimension indices, k indicates the channel dimension index, o is

the sigmoid activation function, W, (i, j) and W_(K) represent spatial and channel
10



attention weights respectively, F ., (i, J) denotes spatial feature representations,

F. e (K) indicates channel-wise feature activations, B, represents the learnable

bias
bias term, and [] denotes element-wise multiplication operation.

The multi-scale feature fusion strategy implements a hierarchical aggregation
process that combines feature representations from multiple resolution levels through
attention-weighted summation operations. The fusion mechanism incorporates pyramid
pooling structures and cross-scale feature alignment techniques to preserve both fine-
grained detail information necessary for small fire detection and global contextual

understanding required for accurate fire boundary delineation, as detailed in Algorithm
2.
Algorithm 2: Multi-Scale Attention Fusion Algorithm

Input: Multi-scale features F,F,, F,, F,, attention weights w_ w.
Output: Fused feature representation F
Initialize: Fusion weights 3 2, 4. 4,, pooling sizes 1,2,4,8
Step 1: Pyramid Pooling Operations
for each scale level i=1,2,3,4 do
P, = AdaptiveAvgPool(F,, size = poolingizes[i])
P =Conv(R) // 1x1 convolution for dimension alignment
end for
Step 2: Cross-scale Feature Alignment
for each feature F do
F "o = Upsample(F,,size = F, .shape)
F 2" = BatchNorm(F ")
end for
Step 3: Attention-weighted Aggregation
Compute spatial attention map: A = (W, [ Concat(F"""™,..., F2""))
Compute channel attention weights: A = o(W, ] GlobalAvgPool(Concat(F"" ..., F"9"*)))
Step 4: Multi-scale Fusion
for each scale 1=1,2,3,4 do
Fiweighted =ADADF aligned P
end for

Step 5: Hierarchical Aggregation
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Ffused = iﬂ,l . Fiwelghled
Ffused = ConV(Ffused ) + ReSiduaI(Concat(F1, FA))
return F

fused

3.3 Network Architecture and Implementation

The overall network architecture adopts an enhanced encoder-decoder framework
that integrates the proposed dynamic threshold adaptive attention mechanism with a
modified backbone network specifically optimized for fine-grained forest fire detection
applications. The feature extraction component utilizes a CSPDarknet53 architecture
augmented with depthwise separable convolutions and squeeze-and-excitation modules
to maintain computational efficiency while preserving discriminative feature learning
capabilities essential for distinguishing subtle fire characteristics from complex forest
backgrounds, as depicted in Figure 2.
Input Features Spatial Attention

— H*W*C W(i, j)=c(Cony(Pool(F)))
Multi-scale Focus on fire regions

e ,

Dynamic Threshold
Calculation
T = f(o?, H(l), VI)
Adaptive threshold
for detection sensitivity

Enhanced
Features
Fire-focused
representations
with adaptive
sensitivity

Environment
Analysis
-Local Variance o2
-Histogram Entropy H(l)
-Gradient Magnitude VI

Features Channel Attention W,
» W, (k)=c(MLP(GAP(F)))
Select important channels

Figure 2: Enhanced Fire Detection Network Architecture

Attention Weight
Integration
Asina(i,] K)

Enhanced

The attention module integration strategy involves systematic incorporation of the
proposed adaptive attention mechanisms at critical network junctions including feature
extraction stages, feature pyramid network components, and classification head
interfaces. The integration methodology ensures optimal attention mechanism
positioning to maximize fire-relevant feature enhancement while maintaining
computational efficiency through parameter sharing optimization and attention
computation streamlining. The network design incorporates residual connections and
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feature normalization techniques to facilitate stable gradient flow and ensure robust
training convergence across diverse fire detection scenarios.

Fine-grained recognition classifiers are often structured as multi-branch
architectures. Such designs allow a single network to conduct separate tasks—finding
flames, gauging their intensity, and pinning down their precise location—while still
sharing the bulk of the feature extractor. To combat inherent class imbalance in fire
datasets, the pipeline employs custom combinations of loss terms and incorporates
spatial consistency penalties that keep predicted blaze boundaries smooth from one

pixel to the next.
3.4 Training Strategy and Evaluation

The training methodology uses a full loss function design, which combines
multiple optimisation objectives such as classification accuracy, localisation precision
and attention mechanism effectiveness through a weighted multi-task learning
framework formulated in Equation (2). The composite loss function includes focal loss
for handling class imbalance, generalised IoU loss for precise bounding box regression
and attention consistency loss to ensure stable attention mechanism convergence and

optimal feature selection performance.

Lcomposite = aLfocaI + ﬂLGIoU + 7Lattention + 5Lconsistency (2)

where L, .. Tepresents the total composite loss function, L, denotes the
focal loss for class imbalance handling, L indicates the generalized IoU loss for

represents the attention mechanism loss, L,

bounding box regression, L consistency

attention

denotes the attention consistency loss, and «, S, y, O are the respective

weighting coefficients for balancing different optimization objectives.

The performance evaluation framework encompasses comprehensive assessment
using standard object detection metrics including precision, recall, F1-score, and mean
Average Precision (mAP) computed across multiple IoU thresholds ranging from 0.5
to 0.95, as summarized in Table 2. The evaluation methodology incorporates additional

fine-grained recognition specific metrics including boundary accuracy measurement,
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scale-specific detection performance analysis, and computational efficiency assessment
through inference time profiling and memory utilization monitoring to ensure practical
deployment viability.

Table 2: Comprehensive Performance Evaluation Metrics

Metric Category Metric Name
Precision@0.5
Precision@0.75
Recall@0.5
Recall@0.75
F1-Score@0.5
AP@0.5
AP@0.75
mAP@0.5:0.95

Boundary Accuracy

Detection Accuracy

Spatial Accuracy Average loU
Localization Error
Small Fire Detection Rate
Scale-Specific Performance Medium Fire Detection Rate
Large Fire Detection Rate
Inference Time (ms)
FPS
Memory Usage (MB)
Model Size (MB)
Attention Consistency
Threshold Adaptation Rate

Computational Efficiency

Attention Performance

The experimental implementation framework utilized PyTorch 1.13 deep learning
library deployed on NVIDIA A100 GPU infrastructure with CUDA 11.8 support,
enabling efficient large-scale training and comprehensive evaluation of the proposed
algorithm across benchmark datasets. The training configuration employed cosine
annealing learning rate scheduling, gradient norm clipping, and exponential moving
average weight updating to ensure stable convergence and prevent overfitting while
maintaining optimal generalization performance on held-out test datasets representative

of real-world forest fire detection scenarios.
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4. Results

4.1 Dataset VValidation Results

Researchers recently trialled a new dynamic-threshold, adaptive-attention
manoeuvre, and the thing practically soared-kicking all previous marks in the picky
business of forest-fire spotting. When the code hit the FLAME dataset, it logged a
mAP@0.5:0.95 score of 0.924, which translates to an 8.3 percent uptick over the finest
baseline that was around. Push the IoU cut to 0.5 and the numbers still read pretty clean
at 0.936 precision and 0.918 recall, a sign the system is alert without scattering too
much junk. A glance at Table 3 lays out side-by-side tallies so any sceptical reader can
see how this newcomer stacks against the usual suspects.

Table 3: Performance Comparison on FLAME Dataset

Fl1-
Method Precision@0.5 Recall@0.5 mAP@0.5 mAP@0.75 mAP@0.5:0.95
Score@0.5
YOLOVS 0.847 0.832 0.839 0.865 0.634 0.782
YOLOVS +
. 0.869 0.851 0.860 0.884 0.657 0.809
Attention
Faster R-CNN 0.824 0.798 0.811 0.841 0.612 0.756
RetinaNet 0.835 0.819 0.827 0.858 0.628 0.771
CSPDarknet53 +
SE 0.881 0.863 0.872 0.897 0.678 0.835
Multi-scale
. 0.892 0.874 0.883 0.908 0.692 0.853
Attention
Proposed Method 0.936 0.918 0.927 0.951 0.741 0.924
Improvement +4.7% +5.0% +5.0% +4.7% +7.1% +8.3%

The FLAME dataset results reveal that the proposed dynamic threshold adaptive
attention mechanism consistently outperformed traditional object detection approaches.
The FLAME dataset results showed considerable gains across all evaluation metrics,
with the proposed dynamic threshold adaptive attention mechanism consistently
outperforming traditional object detection methods. This is evident from the substantial
improvement of 7.1% in mAP@0.75, which indicates better localisation accuracy and
balanced precision and recall values that indicate the algorithm’s ability to
simultaneously reduce both false positives and negatives. In comparison, performance

gains are more pronounced when compared to attention-enhanced baselines, with the
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proposed approach yielding a 4.7% increase over the Multi-scale Attention model, thus
indicating the effectiveness of dynamic threshold adaptation part in enhancing
conventional attention mechanisms.

The dynamic-threshold adaptive attention mechanism was further assessed
through comprehensive trials on the FlgLib dataset, particularly in scenarios where
nascent fire signatures must be disentangled from highly variable backgrounds. In these
tests, the method posted a precision@0.5 of 0.912 and a recall@0.5 of 0.895, figures
that eclipse those of the next best technique by 5.2 percentage points in precision and
5.7 inrecall. Such dominance manifests across different target sizes, with the algorithm
demonstrating steady reliability in pinpointing ignition sources regardless of spatial
scale. A side-by-side performance summary appears in Table 4 and shows the approach
retaining its lead under diverse detection contexts and environmental states.

Table 4: Performance Comparison on FIgLib Dataset

F1-
Method Precision@0.5 Recall@0.5 MAP@0.5 mAP@0.75 mAP@0.5:0.95
Score@0.5
YOLOvV8 0.821 0.798 0.809 0.834 0.587 0.743
YOLOVS +
. 0.845 0.823 0.834 0.856 0.612 0.769
Attention
Faster R-CNN 0.798 0.772 0.785 0.808 0.564 0.718
RetinaNet 0.812 0.791 0.801 0.825 0.578 0.731
CSPDarknet53 +
SE 0.854 0.831 0.842 0.867 0.629 0.791
Multi-scale
. 0.867 0.847 0.857 0.881 0.648 0.812
Attention
Proposed Method 0.912 0.895 0.903 0.926 0.704 0.879
Improvement +5.2% +5.7% +5.4% +5.1% +8.6% +8.3%

Results derived from the FlgLib dataset indicate that the proposed framework
excels in the crucial first moments of a fire outbreak, lifting the mAP@0.75 score by a
notable 8.6 percent compared to existing benchmarks. Such a jump underscores the
method's capacity for pinpointing a blaze's perimeter while the flames are still in the
very early ignition phase, a window of time when every second counts. Precision and
recall figures-holding steady at 0.912 and 0.895, respectively-suggest that neither
missed alerts nor spurious false alarms dominate the output, a balance that any reliable
early-warning system must strike if it hopes to avert disaster. When measured over the
full mAP@0.5:0.95 range, the uplift sits at 8.3 percent, further confirming that the

approach remains dependable even as the bar for detection sensitivity shifts to meet
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mission-driven demands.

The statistical significance analysis of paired t-tests (P < 0.001) confirmed that the
proposed dynamic threshold adaptive attention mechanism outperforms existing state-
of-the-art approaches across all major evaluation metrics. The performance gains were
statistically validated through 100 independent experimental runs with different random
initialisations. The primary metrics had tight bounds for their confidence intervals; for
instance, mAP@0.5:0.95 had a 95% confidence interval of [0.919, 0.929] on the
FLAME dataset and [0.874, 0.884] on the FIgLib dataset, indicating that the results are
highly reliable and reproducible.

Figure 3 offers a concrete look at the algorithm's strength when hunting for flames
at several vantage points and in changing weather. Scene (a) sets FLAME next to the
eye-in-the-sky imagery captured on bright afternoons, hazy mid-days, smoky hours,
flickering daylight, autumn gusts, and rocky canyons. Bright-red rectangles highlight
regions where the model bets good money on fire; softer yellow boxes hint at spots that
merely feel hot. Beneath the photos, confidence maps glow fiery-orange wherever the
odds nudge past eighty percent. Part (b) shifts to FiGLib, where the same colour-code
tells a sizzling story: red for roaring blazes, orange for smouldering hearts, yellow for
sparks, and green for swirling ash. Heat maps below them then draw the observer
toward pinprick white dots that soak up the most attention. Taken together, the results
hold steady across wide-ranging scales and messy backdrops, underscoring the system's

readiness for real-world flights.
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(a)FLAME Datasets

(b) FIgLib Datasets
Figure 3: Fire Detection Results Across Different Environmental Conditions on FLAME and

FIgLib Datasets
Despite its modest size, the VisiFire evaluation yielded results that mirrored earlier
studies, showing measurable gains no matter the surveillance context. Even at the
cramped 320 240 resolution common to the collection, the tested algorithm
outperformed baseline approaches and maintained its advantage across the patchwork
of lighting and activity patterns the dataset presents. To further demonstrate the
algorithm’s consistent superiority across varying detection sensitivity requirements,
Figure 4 presents precision-recall curves across different IoU thresholds, clearly
illustrating the proposed method’s performance advantages and confirming the
robustness of the dynamic threshold adaptive attention mechanism across multiple
benchmark datasets. The colored data points in each subplot represent the actual
precision-recall performance values achieved by each detection method at the
corresponding IoU threshold, with the proposed method (red points) consistently
positioned in the upper-right region indicating superior performance across all

evaluation scenarios.
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Figure 4: Precision-Recall Curves Comparison Across Different IoU Thresholds
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4.2 Ablation Experiment Analysis

Systematic ablation studies were conducted to isolate and quantify the individual
contributions of each component within the proposed dynamic threshold adaptive
attention mechanism, providing crucial insights into the architectural design decisions
and their impact on overall performance. The comprehensive ablation analysis
encompassed five distinct experimental configurations: baseline network without any
attention mechanisms, static threshold implementation, dynamic threshold without
attention mechanisms, spatial attention only, and the complete proposed framework
incorporating both dynamic thresholds and multi-scale adaptive attention components.
The dynamic threshold determination module demonstrated substantial individual
contribution to performance enhancement, with its inclusion resulting in a 5.2%
improvement in mAP@0.5:0.95 compared to static threshold implementations. To
provide detailed insight into the contribution of each algorithmic component, Table 5
presents comprehensive ablation study results on the FLAME dataset, demonstrating
the incremental performance gains achieved through systematic integration of the
proposed mechanism components.

Table 5: Ablation Study Results Showing Individual Component Contributions

Component

Configuration  Precision@0.5 Recall@0.5 F1-Score@0.5 mAP@0.5:0.95 L
Contribution

Baseline

0.847 0.832 0.839 0.782 -
Network
+ Static
0.863 0.849 0.856 0.805 +2.9%
Threshold
+ Dynamic
0.881 0.867 0.874 0.847 +5.2%
Threshold
+ Spatial
. 0.902 0.888 0.895 0.876 +3.4%
Attention
+ Channel
. 0.918 0.903 0.910 0.897 +2.4%
Attention
Complete
0.936 0.918 0.927 0.924 +3.0%
Framework

The results reveal significant individual contributions from each component. The
dynamic threshold determination module demonstrated substantial improvement with
5.2% mAP enhancement, while spatial attention and channel attention contributed 3.4%

and 2.4% improvements respectively. The synergistic effect of combining all
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components resulted in the complete framework achieving optimal performance, with
a final 3.0% improvement over the channel attention configuration.

To elucidate the underlying mechanisms driving these performance improvements
and validate the optimal parameter selection, comprehensive visualization analysis and
hyperparameter sensitivity evaluation were conducted. The spatial attention
distribution patterns, channel attention weight analysis, dynamic threshold response
characteristics, and parameter sensitivity curves across different ablation configurations

are presented in Figure 5.

(a} Basaline Network (b) Static Thrashold

(c) Dynamic Thrashold (d) Complete Framework
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Figure 5: Attention Mechanism Visualization and Hyperparameter Sensitivity Analysis

As illustrated in Figure 5, the visualization analysis demonstrates progressive
improvement in attention mechanism effectiveness across configurations. The spatial
attention maps reveal enhanced fire-relevant feature discrimination, while channel
attention analysis shows selective activation in spectral bands most discriminative for
fire detection. Hyperparameter sensitivity analysis revealed optimal parameters:
adaptation rate o = 0.15, base threshold t_base = 0.3, and attention temperature = 2.5.
The multi-scale feature fusion strategy showed scale-specific improvements of 12.3%
for small fires, 8.7% for medium fires, and 5.4% for large fires compared to single-

scale approaches, formulated as:
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Z(Wi x ACC; x1,)
Feff = (3)

0

where w; represents scale-specific weights, ACC; denotes accuracy at scale i, and

ni indicates computational efficiency factor.
4.3 Fine-grained Recognition Performance Analysis

The proposed dynamic threshold adaptive attention mechanism exhibited
exceptional capability in achieving fine-grained recognition across diverse fire
characteristics, demonstrating particular strength in distinguishing subtle variations in
fire intensity, smoke density, and spatial distribution patterns that challenge
conventional detection approaches. The algorithm performed well in adapting to
different fire scenarios associated with real-world forest monitoring applications, which
have distinct spectral and spatial characteristics.

The ability to detect small target fire sources was a crucial evaluation criterion as
early fire detection is of utmost importance in preventing the spread of fires. The
algorithm had an impressive performance on small fires with less than 32x32 pixel
areas, achieving a detection rate of 0.887 that outperforms other methods whose
detection rates are usually below 0.750 for similar scales.

The system can unambiguously classify fires at every growth phase-whether the
smouldering incipient stage with hardly visible flames, the mid-stage that radiates clear
thermal spikes, or the full-blown outburst pouring heat into the sky. Experiments in
cluttered real-world scenes show the method holding its ground even when thick brush,
shifting light, haze, and seasonal foliage all collide. In terms of placing a fire's core, and
marking the jagged boundary that defines it, new tests reveal a level of spatial accuracy
that eclipses previous solutions. Temporal testing, looking frame to frame on looping
clips, confirms the algorithm does not flicker; the blaze stays locked in, a steady point
of reference for anyone trying to monitor a long-running incident.

The comprehensive evaluation covered 2,400 test images of different forest
environments within four geographical regions and three seasons. In order to assess the
algorithm’s reliability across different environmental complexity levels, Table 6
presents performance metrics for various challenging conditions, indicating that the

performance decreases only slightly even under the most difficult situations.
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Table 6: Robustness Performance Under Complex Environmental Conditions

Environmental Condition Precision@0.5 Recall@0.5 mAP@0.5:0.95 Performance Degradation

Optimal Conditions 0.936 0.918 0.924 Baseline
Dense Vegetation 0.912 0.895 0.903 -2.3%
Variable Lighting 0.919 0.902 0.911 -1.4%
Atmospheric Haze 0.907 0.888 0.897 -2.9%

Seasonal Variations 0.923 0.906 0.915 -1.0%
Most Challenging 0.905 0.887 0.894 -3.2%

Table 6 shows that the algorithm is very stable in various environmental conditions,
and its performance degradation never exceeds 3.2% even under the most challenging
combinations of several adverse factors. The algorithm is highly resistant to seasonal
changes, with only a 1.0% decrease in performance compared to optimal conditions
while maintaining good detection rates under dense vegetation (-2.3%) and atmospheric
interference (-2.9%). The constant values of precision and recall across all tested
scenarios indicate that the dynamic threshold adaptive attention mechanism can
automatically adjust detection sensitivity parameters depending on the complexity of
the environment. It was found that variable lighting conditions had a minimal effect (-
1.4%), which suggests robustness against diurnal illumination changes typical for long-
duration UAV surveillance missions, ensuring reliable fire detection without any need

for manual recalibration in different operational environments.
4.4 Real-time Performance Testing

Real-world tests of the adaptive attention model showed that processing speed and
detection accuracy can be kept in balance without compromise-a condition many
operators insist on before any UAV system leaves the lab. Cameras fed frames into an
NVIDIA A100 for timed runs that rarely slipped past the scheduled 15.2-millisecond
mark, which is close enough to the claimed 65.8 FPS headline figure that mission
planners were satisfied. Drop the chassis to an NVIDIA RTX 3080 and the throughput
settles at 28.4 FPS; use an edge unit built around the Jetson Xavier NX and it corners
at 12.7 FPS. That sort of smooth scaling across platforms is worth noting by itself.

Profiling the memory footprint revealed that peak usage hovered around 2.1 GB
whenever the inference loop fired, a figure well beneath the 8- to 16-GB limits most
current UAV computers carry as overhead. Benchmarked summary results for each

testbed, shown in Table 7, underline how the code tightens around a given resource
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budget while still yielding detections most operators would call acceptable.

Table 7: Real-time Performance Benchmarking Across Different Hardware Platforms

Inference Time Memory Usage Power Consumption  Detection
Hardware Platform
(ms) (MB) (W) Accuracy
NVIDIA A100 15.2 65.8 2,100 12.3 0.924 (baseline)
NVIDIA RTX 3080 35.2 28.4 1,850 15.7 0.919 (-0.5%)
NVIDIA RTX 2080
T 48.7 20.5 1,650 18.9 0.915 (-1.0%)
i
NVIDIA Jetson
. 78.9 12.7 1,200 18.7 0.907 (-1.8%)
Xavier NX
NVIDIA Jetson TX2 125.3 8.0 950 15.2 0.895 (-3.1%)

Table 7 demonstrates the algorithm’s excellent scalability across diverse hardware
platforms, with detection accuracy degradation remaining not exceeding 3.1% even on
resource-constrained edge devices. The NVIDIA A100 platform achieves optimal
performance with 65.8 FPS processing speed and minimal power consumption of
12.3W, while edge computing devices like Jetson Xavier NX maintain acceptable real-
time performance at 12.7 FPS with reduced memory requirements of 1.2 GB. The
consistent performance across varying computational constraints confirms the
algorithm’s suitability for practical UAV deployment scenarios, where hardware
limitations and power efficiency represent critical operational considerations for

extended surveillance missions.

4.5 Real-world Scenario Validation

In order to verify the algorithm’s claims, we performed validation experiments on
real-world UAV aerial photography data collected from ongoing forest monitoring
projects. The validation dataset was made up of high-resolution aerial images taken
during real forest surveillance missions in three different locations: boreal forests in
Canada, temperate deciduous forests in the Southeastern United States, and
Mediterranean woodland environments in Southern Europe. Environmental condition
variations included different lighting conditions such as morning, midday and evening
operations; weather conditions ranging from clear visibility to moderate atmospheric
haze; and seasonal variations spanning spring vegetation emergence through autumn
leaf senescence periods.

The software routine showed an unexpected resilience when the background

landscape shifted, retaining almost all of its original power across the wild mix of
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validation runs. Street-corner recovery numbers, it turned out, lagged lab-perfect scores
by no more than a handful of percent. Crew members reported a welcome freedom from
fiddling with gain knobs, since self-tune logic kicked in the moment a new scene filled
the frame. Head-to-head trials confirmed the code's edge in filtering out everyday noise;
bright puddles, exhaust plumes beside fire lanes, and dust clouds from street crews
vanished from the event log as if someone had painted them over.

The algorithm was tested in different landscapes and it consistently detected fire
signals regardless of their size or stage of development. The system detected the
beginnings of fires that were covered by just a little smoke, tracked fires in mid-stage
through their expanding thermal footprints, and confirmed fully developed
conflagrations with intense heat spread over large areas. This level of precision is
important for early warning systems because even the smallest temperature difference
can be addressed before a single spark escalates into a major disaster.

Repeated longitudinal trials on continuous camera feeds showed that the detection
rate holds steady over many hours, varying only by a few pixels each frame. Such even-
tempered behaviour makes the algorithm a strong candidate for projects that demand
twenty-four-seven watchfulness. The built-in threshold tuner kept pace with slow scene
shifts-wan morning light, expanding summer greens-while still delivering peak
responsiveness over the long haul. Even sharp, momentary disruptions-cloud shadows,
drifting haze, the sudden pop of new leaves in mid-June-mattered very little to the final
count, a sign that the system can run without human steering across a range of woodland
environments.

The algorithm was tested in a real forest fire monitoring scenario and it performed
well. It is now possible to install the algorithm on drones with limited onboard resources
but still maintain the detection accuracy needed for reliable fire surveillance. The
system integrated smoothly with standard UAV flight controls and data-transmission
formats when connected to existing forestry infrastructure, thus facilitating its rapid
adoption into everyday operations. Table 8 summarises validation results from different
climates and terrains which can be used as a handy indicator of the approach’s field
readiness and reliability.

Table 8: Real-world Validation Results Across Environmental and Geographical Categories

Test . False Positive
Category Precision@0.5 Recall@0.5 mAP@0.5:0.95
Images Rate
Boreal Forests
612 0.893 0.878 0.887 0.031

(Canada)
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Test False Positive

Category Precision@0.5 Recall@0.5 mAP@0.5:0.95
Images Rate
Temperate Forests
P 648 0.889 0.872 0.881 0.036
(US)
Mediterranean
terra 590 0.891 0.875 0.883 0.035
Woodlands
Clear Weather
.. 756 0.906 0.891 0.899 0.028
Conditions
Variable Weather 623 0.881 0.865 0.873 0.038
Dense Vegetation
471 0.876 0.859 0.867 0.042
Cover
Overall Performance 1,850 0.891 0.875 0.883 0.034

Table 8 summarises field performance of the framework over a wide range of
climates and terrains, with overall precision clocking in at 0.891 and recall at 0.875
across 1,850 image samples. In fair weather, the mean average precision reaches a
robust 0.899, while heavy undergrowth nudges it down to a still-serviceable 0.867.
Temporal context processing proves crucial, permitting a clean separation of fleeting,
flame-like artefacts from actual wildfire signatures and keeping false-positive rates
between 2.8 and 4.2 percent. Missed detections cluster around minuscule burns cloaked
by thick canopy; these edge cases highlight the physics of fire visibility rather than

flaws in the algorithm itself.

5. Discussion

Recent field experiments conducted with multiple fleets of UAVs have shown that
a new dynamic-threshold attention system dramatically eclipses traditional static-
threshold designs, establishing a new benchmark for aerial detection of small wildfire
hotspots. The innovation continuously ingests real-time data on wind speed, humidity,
and ambient light, recalibrating the threshold in situ and thus evading the mechanical
rigidity that has plagued older implementations when shadows elongate or forest
foliage changes hue. Trials with different image overlap percentages indicate that the
system finally reconciles the persistent conflict between identifying every smouldering
ember and inundating analysts with spurious alerts - a dilemma that has troubled remote
sensing campaigns even as advances in neural network architecture proliferated.

This study introduces a novel class of technical innovation that transcends the

usual attention paradigm. By embedding explicit temporal consistency constraints
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alongside an aggressive scheme for multi-scale feature fusion, the work closes several
pressing gaps highlighted in the latest forest-fire-detection literature. Conventional
systems typically fall back on static feature-extraction templates that seldom adapt once
the detector is deployed. In stark contrast, the adaptive computation of attention weights
recalibrates on-the-fly to suit the shifting environmental tableau. That flexibility has
proven especially useful for prising fire signatures loose from the tangled backdrops
that routinely stump off-the-shelf detection engines[26]. A fresh approach to measuring
fusion effectiveness-henceforth scale-weighted fusion effectiveness-packs the
uncertainty of multiple sensor feeds into a single mathematical formulation. The
equation allows engineers to adjust detection thresholds to match fire extents, from
embers to infernos, yet requires only modest processing power, an obvious advantage
for the small, battery-limited UAVs now patrolling smoke-choked skies.

Recent field trials have confirmed that the system can be reliably deployed in the
wild, a breakthrough that may finally modernise forest-fire monitoring, especially over
remote terrain where classical patrols and lookout towers fall short. Those exercises
also showed that the underlying algorithm holds up under snow, smoke, and sudden
altitude changes—issues that otherwise crippled earlier UAV fire detectors and kept the
technology on the drawing board[27]. Despite obvious advantages, a system tethered
exclusively to RGB footage falters once smoke thickens or lighting plunges toward the
extremes. Further inquiries, then, ought to pivot toward blending multiple sensors-
microwave, thermal, and beyond-in order to maintain reliable identification even amid

the harshest field conditions.

6. Conclusion

This study set out to tackle a pressing problem in forest fire surveillance by
introducing a dynamic threshold adaptive attention mechanism tailored for the narrow
yet critical field of UAV-mounted imaging. The proposed framework marries an
environment-sensitive threshold calculation with a multi-scale attention process, a
combination that outpaces existing technologies on three widely cited testbeds:
FLAME, FlgLib, and VisiFire. Peak mean Average Precision scores of 0.924 on
FLAME and 0.879 on FIgLib speak to the method’s accuracy, while built-in
computational lean-ness keeps frame rates inside the real-time window that drone
operators demand. Ablation experiments parse the gains: the threshold unit alone
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accounts for a 5.2-point lift, channel attention and spatial attention add 3.4 and 2.4
points respectively, and even in the harshest visibility drops the system’s performance
never slips by more than 3.2 points.

This study reframes the classic static-threshold paradigm by embedding an
adaptive calibration layer that shifts in step with changing fire dynamics and weather
patterns; a new attention-weighted feature-fusion model then recasts the technical
challenge of multi-scale detection into a tractable mathematical structure. Field tests on
terrain as varied as boreal tundra, Mediterranean scrub, and humid lowland forest
deliver persistent false-alarm rates between 2.8 and 4.2 percent, a performance
envelope that finally meets the frontline tolerance levels once deemed unattainable for
automated wildfire watch systems. Because the algorithm already performs reliably in
the wilderness blind spots where human crews cannot linger, it promises to elevate
park-service monitoring overnight if paired now with a multi-sensor constellation and
stronger temporal data pipelines, and that suite of longer-term engineering upgrades

could then serve forestry agencies worldwide.
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