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Abstract: To address the limitations of conventional cable force optimization methods in simulta-
neously handling multiple objectives, this study presents a Kriging-IGWO multi-objective cable force
optimization framework for reinforced concrete (RC) arch bridges, integrated with multi-objective
optimization theory. The proposed methodology couples a Kriging surrogate model with an Improved
Grey Wolf Optimization (IGWO) algorithm. First, three enhancement strategies are introduced to
improve the traditional Grey Wolf Optimizer, reducing its vulnerability to local optima and enabling
adaptation to complex high-dimensional optimization problems. Subsequently, the mechanical behavior
of RC arch bridges during cantilever construction is analyzed, and a multi-objective cable force
optimization model is established using multi-objective theory and the Kriging surrogate model. Finally,
the framework is validated through a case study of a long-span RC arch bridge, yielding optimized cable
force solutions. The results demonstrate that the IGWO algorithm outperforms other optimization
algorithms in convergence accuracy and stabil-ity when solving both unimodal and multimodal test
functions. The Kriging-based sur-rogate model for the RC arch bridge meets the required accuracy
thresholds and exhibits strong adaptability to multi-objective cable force optimization tasks. The
optimized cable force distribution aligns well with the initial design concept but shows a moderate in-
crease in force magnitudes. Notably, peak tensile stresses in the top and bottom slabs of arch segments
are significantly reduced, accompanied by decreases in bending moments and axial forces across arch
cross-sections. Vertical displacements of the main arch are markedly minimized, and the geometric
linearity of the arch is optimized, fully satisfying all predefined design objectives.

Keywords: Reinforced concrete arch bridge; Cable force optimization; Kriging surrogate model; Im-
proving the Gray Wolf algorithm; Multi-Objective optimization

1. Introduction

Characterized by their superior spanning capability, aesthetically pleasing configurations, and
exceptional structural durability, reinforced concrete (RC) arch bridges assume a pivotal role in
contemporary bridge engineering, finding extensive application in the development of transportation
infrastructure, including highways and railways. With the continuous growth of traffic volume and the
increasing demands on the structural performance of bridges, ensuring that RC arch bridges have good
mechanical properties and stability during their service life has become a key issue in the engineering
field. As a critical determinant governing the mechanical behavior of reinforced concrete (RC) arch
bridges, the rational optimization of cable forces holds paramount significance. Precise determination of
cable force distribution not only enables meticulous modulation of the arch rib’s internal force state—
thereby maintaining optimal stress levels that balance safety and efficiency under all loading scenarios—
but also substantially enhances the bridge’s global stiffness, mitigates deformations, and ensures long-
term operational reliability throughout its service life.

Conventional cable force optimization methods predominantly rely on finite element analysis (FEA).
While delivering high accuracy, these approaches suffer from excessive computational loads and high
operational costs, making them impractical for meeting rapid optimization requirements in real-world
engineering scenarios [1-3]. Over the past decade, intelligent optimization algorithms have garnered
extensive attention and application due to their superior global search capability and effectiveness in
handling com-plex problems. Scholars worldwide have begun applying these algorithms to cable force
optimization challenges. Zhu [4] employed finite element software and Matlab as the computational core
and primary control framework, formulating an objective function centered on minimizing bending
moment energy. By integrating an influence matrix and an elite retention strategy into the genetic
algorithm, the study conducted optimization of cable forces for the completed-stage cable-stayed bridge.
The results demonstrated that this approach could significantly reduce computational workload while
attaining superior computational precision. Zhou [5] introduced a cable force optimization methodology
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leveraging a deep neural network (DNN) surrogate model. By employing a finite element model to
generate load-induced configuration samples that characterize the optimization problem, the DNN
surrogate model was utilized to learn the intrinsic mapping relation-ships within these samples—thereby
decoupling the optimization process from finite element analysis. Random cable forces within reasonable
constraints can be fed into the surrogate model to accurately predict the corresponding arch rib
configurations. Zhong [6] utilized an enhanced particle swarm optimization algorithm to optimize the
stay cable forces of an asymmetric single-tower cable-stayed bridge in its as-built state. By formulating
the objective function as the summation of bending energies for both the main girder and bridge tower,
a quadratic mathematical optimization model was established, with outcomes compared against those
from the traditional unconstrained minimum bending energy approach. The results demonstrate that the
enhanced particle swarm optimization algorithm is efficient, robust, and practically viable for cable force
optimization in completed bridge structures. Guo [7] performed an optimization investigation on the
cable forces of a specific curved cable-stayed bridge by integrating the simulated annealing algorithm
with a cubic B-spline interpolation curve. The results demonstrated that this approach can efficiently
generate multiple objective function values, thereby identifying the optimal solution as the minimum
among these values and offering a valuable reference for cable force optimization in curved cable-stayed
bridge engineering.

Traditional cable force optimization methods are mostly based on a single objective, such as minimizing
structural internal forces or only considering the minimization of structural deformation. However, in
practical engineering, the optimal design of bridge structures often requires comprehensive consideration
of multiple objectives [8-12]. The sole application of machine intelligence algorithms to solve cable force
optimization problems suffers from two issues: large computational load and insufficient depth in the
practical implementation of such algorithms. Therefore, based on the multi-objective optimization theory,
this study combines the improved Gray Wolf algorithm (IGWO) with Kriging surrogate mode to propose
a Kriging-IGWO multi-objective cable force optimization method for RC arch Bridges, which can
provide references for the cable force optimization of RC arch Bridges in engineering, and has important
theoretical significance and engineering application value.

2. Kriging response surface model construction

To fit the response surface of the long-span RC arch bridge, the design parameters of numerous sets of
arch bridge models were fed into the finite element software. Subsequently, the corresponding response
parameters were acquired. These parameters were then utilized as the training sample dataset for
establishing the Kriging surrogate model. Through the establishment of a Kriging surrogate model, the
response surface of the RC arch bridge was approximated with high fidelity. Drawing upon the theory of
stochastic processes, the Kriging surrogate model forecasts the response of unknown points via the
spatial correlation of sample points. This is done to formulate an approximate association between input
variables and output responses [12]. Its mathematical representation is presented in Equation (1):

y(x) = F(B,x) +2(x) =f7 (x)B + () 1)
where, y(x) represents the response value of RC arch bridge structure; T (0B stands for the polynomial

regression part; f(x) stands for a polynomial basis function vector; p is employed to signify the
regression coefficient vector; z(x) is a random part, and its statistical characteristics follow a normal
distribution, as presented in equation (2):

E(z(x)) =0,D(z(x)) = o
Cov[z(x), z(X;)]1 = oR(8, X, X
R, %, X;)
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where, 6 stands for the correlation function parameter; serves as the correlation function

|k gk
between any two sample points. and d. = x| is usually related, and its expression is shown in
equation (3):
n
R(@,%, %) = [R(6..d) =[x = ]| 3)
k=1

where, n is the dimension of the random variable.

To precisely acquire the optimal linear unbiased estimation of the prediction point X, it is necessary to
minimize the mean square error value of prediction point x, and the expressions of mean and variance
are shown in equations (4)-(5):
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From the foregoing Kriging model construction procedure, it is evident that the predicted value is
exclusively dependent on the variables '5, R and r, so the response value of each sample point can be
obtained only by obtaining the relevant parameter 6.

According to equation (1), the stochastic process follows a normal distribution, then y(x) also follows a
normal distribution, then the log-likelihood function is:

_%[mlnaz+In|R|+(Y-Fﬁ)TR'l(Y-Ff})/az] 0
Taking the derivative of B and 52 respectively and substituting them into equation (7), we can get:
1
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Maximizing equation (8) yields the optimal solution for the parameter &as follows:
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Kriging prediction model can be constructed by solving the above formula.
3. The improved Gray Wolf algorithm based on multiple strategies

3.1 Standard Gray Wolf algorithm (GWOQO)

The Grey Wolf Optimizer (GWO), a swarm - based intelligent optimization algorithm, was introduced
by Seyedali in 2014. drawing inspiration from the predatory actions and pack hierarchy within grey
wolves [13,14]. The rank distribution within the grey wolf population is shown in Figure 1. a wolf is the
leader in the grey wolf population, responsible for decision-making on hunting, rest and other group

activities, which is consistent with the optimal solution within the optimization problem; S wolf is the

assistant of a wolf, assisting in decision - making and guiding the search direction in the algorithm,
second only to « wolf, and thus is regarded as the suboptimal solution of the objective function; ¢ wolf
is the third optimal solution of the objective function, which is responsible for reconnaissance and
lookout, and plays a role in exploring and developing the search space; « wolves are at the lowest level
of the group, so they should follow the command of other grades of grey wolves and find candidate
solutions to the corresponding objective functions in the algorithm [15].

Figure 1 Grey wolf population hierarchy
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Figure 2 The process of wolf hunting

The optimization process of the GWO algorithm is modeled after the predatory behavior of grey wolf
packs. The grey wolf predation process is divided into three sequential stages: prey encirclement, prey
pursuit, and prey assault, as illustrated in Figure 2. Guided by the « wolf, § and 6 wolves execute prey
encirclement, with the prey position assumed to represent the optimal solution. Through iterative
approximation by the «, f, and 6 wolves—collectively termed the top-tier individuals—the optimal
positions of these dominant wolves are leveraged to direct the remaining pack members, including o
wolves, toward continuous convergence on the prey. Within the algorithm's search space, the pack's
position update formula during prey encirclement is defined by equation (10):

X, (t+1) = X, (t)- AD
D =[CX, (t) - X, (t)|
A=2ar, -a

C=2r,

(10)

X, (0

where, t denotes the iteration number in the algorithm; and X;(t+1) denotes the current location

and target location of the gray wolf respectively; X, (0 denotes the prey position; D is the distance
between the first three gray wolves and other wolves; A and C denote the convergence factor vector and
the coefficient vector, respectively; r is a random vector with values between 0 and 1; a is the attenuation
factor.

Following prey encirclement, the top three wolves (a, £, 6) initiate prey pursuit, leading the entire pack
to constrict the encirclement around the prey. The mathematical model describing this hunting process
is defined by equation (11):

D, =[C,X, ()= X(t)|
D, =[C, X, (t) - X (1) (11)
D, =|C3X5(t)— X(t)|

X, =X,(t)-AD,

X,=X,t)-AD, (12)
Xy =X;(t)—AD;
X(t+1) =t X ¥ X 22 X% (13)
where, D, , D, and D; denote the distances between the top three wolves and individual pack members,

X, X

respectively; > and X5 denote the updated positions of individual pack members based on the

positions of the top three wolves; X'(t+1) denotes the final position of an individual wolf after the t-th
iteration.

The GWO algorithm computes the fitness values of individual wolves within the pack via iterative
updates, thereby enabling the update of their optimal positions. This process enables the continuous
optimization of the objective function value and makes it gradually approach the global optimal solution.



3.2 The improved Gray Wolf algorithm

The search mechanism of the traditional GWO algorithm relies on emulating the behavioral patterns of
grey wolves with distinct hierarchical roles within the pack. During the algorithm's iterative process, if
the o wolf fails to represent the global optimum, its guidance of the search may lead to premature
convergence of the population to a local optimum [16-19]. To address this issue, the Levy flight strategy
is incorporated into the algorithm to enable individual grey wolves to explore a broader search space,
escape local optimum traps, and accelerate convergence. Additionally, to balance the algorithm’s local
and global search capabilities and enhance its stability, a nonlinear attenuation strategy is employed to
adjust the attenuation factor a. Lastly, to enhance the algorithm’s search flexibility and improve its
convergence performance, a dynamic weight coefficient is incorporated to adjust the grey wolf positions.
The detailed improvement procedure is outlined as follows:

In this study, the position of o wolves is updated by employing the Levi flight strategy, and the o wolves
guide the other wolves to update the position of the whole population, with the aim of enhancing the
algorithm's global search capacity. Levy flight has the characteristics of random and long distance
hopping, which can enable the gray wolf donor to explore a larger scope in the search space. Its search
step size follows the heavy tail distribution, but the search is more concentrated in the potential area,
reducing the search time in the ineffective area. With the incorporation of the Levy flight strategy, the
grey wolf position update formula is defined by equation (14):
X'(t) = X(t)+1® Levy(1) (14)

where, X'(0) denotes the optimal position of a grey wolf after the t-th iteration; | denotes the weight

coefficient; Levy(1) denotes the search path that obeys the Levy distribution, Ae(.3) /A in this study is
1.5, so:

r=0.01[ X (t) ~ Xpeq( |
Levy(1) = Ll (15)
g

where, K et is the historical optimal solution of the algorithm iteration process; u and v are random
variables subject to normal distribution, then:

ull N,(0,67)
vO N,(0,67)

. TA
F(1+ A)S|n7 (16)
AT(E—) 2
G
o, =1

where, [ is a gamma function.

In the Grey Wolf algorithm, the attenuation factor a follows a linear attenuation pattern, where its value
decreases linearly from 2 to 0 as the number of iterations increases. This linear decay fails to effectively
balance the algorithm’s global convergence and local search capabilities. To balance the algorithm’s
local and global search capabilities and enhance its stability, this study proposes a sinusoidal attenuation
strategy to modify the linear decay of factor a in the GWO algorithm:

a:1+sin(z+7r-L) @
2 max

where, tmax denotes the maximum number of iterations in the algorithm.

Figure 3 shows the curves of linear attenuation and sinusoidal attenuation during 100 iterations. From
the figure, it is evident that during the algorithm’s initial stage, the sinusoidal attenuation factor assumes
a larger value, expanding the search range of grey wolf individuals, enhancing global search capabilities,
and enabling exploration of the potential optimal solution region within a broader search space. As
iterations progress, the sinusoidal attenuation factor decreases nonlinearly, prompting grey wolves to
gradually shift focus to local search and exploit high-quality regions, thereby improving solution



accuracy. Therefore, the nonlinear attenuation factor proposed in this study enables better balance
between the algorithm’s local and global search capabilities.
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Figure 3 Attenuation factor change curve.
As defined in equation (13), in the traditional GWO algorithm, the final position of each individual wolf
is determined as the mean of the top three wolves' positions. Therefore, whether the algorithm can
eventually approach the global optimal solution has a close relationship with the positions of the top
three - ranked wolves. If the o wolf'is not the representative of the global optimal solution, the algorithm
has a high probability of landing in the local optimal solution. This study proposes a dynamic weight
coefficient strategy to enhance the global optimization capabilities of the GWO algorithm. The dynamic
weight coefficient can be adaptively adjusted based on the algorithm’s iterative process or search state,
enabling individual grey wolves to flexibly switch between exploring new regions and exploiting existing
knowledge. This mechanism enhances the algorithm’s search flexibility and improves its convergence
performance. After introducing the dynamic weight coefficient strategy, the final position of the wolf
pack individual after the t iteration is transformed from equation (13) to equation (18), as shown in:
o X+, X, + o, X,

X"(t+1) = 3 (18)
a)——x“
COX, X+ X
X
B
PTX, X, 4 X, (19)
a)——x‘5
TOX, X+ X

where, w denotes the weight coefficient for the positions of the top three wolves;
The flow of the IGWO algorithm is depicted in Figure 4.
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Figure 4 IGWO algorithm flowchart.
4. Multi-objective cable force optimization model in Kriging-IGWO

To determine the optimal cable force combination during the cantilever construction of an RC arch bridge,
this study aims to ensure reasonable load distribution after the bridge is completed, control its
deformation under service loads, and safeguard the structural safety of the arch bridge. This study
establishes a cable force optimization model grounded in Kriging-IGWO. Taking the arch bridge’s
design cable forces as design variables, the model defines the optimization control goals as the stress of
the arch ring section during the cantilever construction stage, the internal forces of the completed arch
bridge, and its deformation.

During the cantilever construction stage of an RC arch bridge, the stress distribution in the arch ring
section is relatively complex, where excessive tensile stress during cable force adjustment can easily lead
to cracks in the top and bottom flanges of the arch ring. Therefore, to ensure that the tensile stress in the
arch ring does not exceed the concrete’s tensile strength during cable force tensioning, the average tensile
stress at the top and bottom flanges of the arch ring is set as the control objective, and the optimization
objective function is formulated as follows:

1L
0, = Min —Z(ai‘ +aib) (20)
N
where, n denotes the quantity of cantilever pouring stages for the RC arch bridge; o denotes the tensile

stress in the arch ring during the cantilever pouring stage of an RC arch bridge;
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Optimizing the cable forces of the stay cables in an RC arch bridge leads to a more reasonable internal
force distribution in the bridge’s main load-bearing components. This optimization enables full
utilization of material properties and enhances the load-bearing capacity of the bridge structure. By taking
the eccentric moment of the bridge’s main arch as the control objective for its internal forces, the
optimization objective function is formulated as follows:

0, = Min{im} (21)

iot N

where, e is the eccentricity of the main arch, &=M/N, .

Optimizing the cable forces of an RC arch bridge effectively controls its deformation under dead weight
and service loads, ensuring that the bridge’s linear geometry better meets the design specifications.
Taking the sum of squares of the differences between the vertical displacements obtained from finite
element calculations and the target vertical displacements at each construction stage of the completed
arch ring as the deformation control objective, the optimization objective function is formulated as
follows:

n
o} :MinFZ(ui —Oi)z} (22)
i=1
Based on the cable force design, 50 groups of sample points were selected by Latin hypercube and
calculated in the finite element software. The response values of the above control targets were obtained,
and the response values were substituted into the Kriging model for fitting. To check the prediction
accuracy of Kriging surrogate mode, this study uses the complex correlation coefficient R?to illustrate.

The closer R? is to 1, the higher the accuracy of the model [18-22].

Z(/ui,pre - /lave)2
R2 — i=1
Z (/ui,true - :uave)2
i=1

(23)

where, #Aore | Hite gng Have denote the predicted value, true value, and average value of point i,
respectively.

Based on the above analysis, a cable force optimization model for RC arch bridges under cantilever
casting was established using Kriging-IGWO. According to the principle of symmetrical structure, 21
stay cables of half structure were selected for analysis. The optimized mathematical model is shown in
Equation (24).

Find X :[xl,xz,-u,xm]T
min(O,,0,,0,)

(24)

—h

where, X denotes the cable force to be optimized;
in an RC arch bridge..

i denotes the design tensile strength of the concrete

Figure 5 depicts the fundamental workflow of cable force optimization for the Kriging-IGWO-based RC
arch bridge structure during cantilever pouring construction.
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5. Engineering Example
5.1 Engineering background and finite element model

Against the project background of the Shuiluohe Bridge in Guizhou Province, the main bridge is a
reinforced concrete cantilever-cast arch bridge with a calculated span of 335 m. The main bridge deck
consists of simply supported prestressed concrete I-beams with a span arrangement of 11x31.75 m and
composite bridge panels. A catenary unhinged arch of the same cross - section is employed for the main
arch. The ratio of its vector span is 1/4.2, while the coefficient of the arch axis is 1.8. The arch rib is
constructed in 45 sections, and section 1-2 (1 '~2") of arch foot is cast in place by scaffolding. Section 3-
22 (3 '~22") adopts hanging basket cantilever casting, and mid-span closing section adopts hanger
construction. C80 concrete is used for casting all arch ribs. and the bridge construction layout is shown
in Figure 6.
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Figure 6 Bridge layout and site monitoring. (a) Layout of bridge type. (b) Construction site monitoring.

The numerical calculation model of RC arch bridge structure was established by finite element software.
The eight-node SOLID65 element was used to simulate the concrete main arch ring and junction pier,
the LINK180 element for fasteners and anchor cables, and beam elements for arch columns and main
girders. The entire bridge was meshed using a combination of mapping and sweeping methods. Figure 7
presents the finite element model.

Figure 7 Finite element model.

5.2 Algorithm performance testing

To validate the performance of the improved strategy in seeking optimal solutions as presented in this
study, 6 types of CEC benchmark test functions are selected to illustrate, including 3 single-peak multi-
dimensional test functions and 3 multi-peak multidimensional test functions. The optimization
performance of the improved Gray Wolf algorithm in this study is compared with GWO, WOA and DBO
algorithms, and the test functions are listed in Table 1.

Table 1 Test function basic information.

Function number Function name The theoretical optimal

solution
f1 Sphere 0
fa Step function 0
fs Quartic noise function 0
fa Ackely 0
fs Generalized Griewank function 0
fe Generalized penalty function 0

Each algorithm operates with a population of 30 and a maximum of 500 iterations. It is independently
run 30 times on the test function. The optimization performance of each algorithm is evaluated by
comparing the optimal, average, and standard deviation values of the test functions calculated by each
algorithm. The optimization results are presented in Table 2.

From Table 2, the IGWO algorithm in this study has reached the theoretical optimal solution in two
single-peak test functions and one multi-peak test function, and the standard deviation of the five test
functions is 0. Although IGWO did not obtain the theoretical optimal solution for the remaining one
single-peak and two multi-peak test functions, its obtained optimal values are closer to the theoretical
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optimum than those of the other three optimization algorithms, with the average optimal values serving
as a reference. For the Ackley function, although the optimal value obtained by the proposed IGWO is
comparable to those of other algorithms, its standard deviation is zero, indicating that the Levy flight
strategy and nonlinear attenuation factor introduced in this study enhance the algorithm’s stability,
strengthen its global search capability, and prevent it from falling into local optima. These results
demonstrate that the IGWO algorithm outperforms other optimization algorithms in convergence
accuracy and stability when solving both single-peak and multi-peak function problems.

Table 2 Optimization test results.

Function number Algorithm name Optimal value Mean value Star_1da_1rd
deviation
WOA 6.2x1018 2.1x101 7.3x10%
f, DBO 7.7x10% 9.2x10Y 2.2x10°Y
GWO 9.5x10°¢ 1.8x10°%° 2.5x10%

IGWO 0 0 0

WOA 5.6x107? 5x10? 3x101

, DBO 9.1x10° 9.3x10°% 4.6x107?
GWO 2.5x10! 5.1x10! 3.4x101

IGWO 0 0 0
WOA 1.5x10° 4.6%x10°3 5.7x1073
f, DBO 3.2x10° 3.1x103 3.2x1073
GWO 4.9%x10* 2.2x1073 1.3x10°3
IGWO 7.8x10° 7.1x10° 1.5x10°
WOA 2.5x1015 2.4x101 1.8x10%4

f, DBO 1.5x1016 1.5x1016 0
GWO 3.5x101 4.2x10 2.5x101

IGWO 1.3x1016 1.3x1016 0
WOA 0 2.1x107 4.9x107

s DBO 0 0 0
GWO 0 7x1073 1.8x1072

IGWO 0 0 0
WOA 4x108 2.8x106 2.3x10°
fs DBO 7.3x107 1.4x10° 3.2x10°
GWO 1.2x10® 5.1x10 3.5x10

IGWO 1.7x10% 1.7x10% 0

To validate the improved convergence speed of the proposed IGWO algorithm, this study presents the
comparison results of the convergence curves of the four algorithms for the test functions, as shown in
Figure 7. For f3, f4 and fs test functions, a while neither IGWO nor the other algorithms converge to the
theoretical optimal solution, IGWO exhibits faster convergence speed, approaches the theoretical
optimum more closely in later iterations, and achieves better convergence accuracy, confirming the
improvement in its convergence speed.
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5.3 Surrogate mode accuracy verification

According to the process mentioned previously, the Kriging surrogate model was built. To validate the
prediction precision of the surrogate model, the complex correlation coefficient R? was utilized to
demonstrate. Figure 9 depicts the convergence history of the multi-objective optimization for the Kriging
surrogate model. The multiple correlation coefficients R? corresponding to the three optimization
objectives are all greater than 0.98, indicating that the accuracy of the 7th-generation Kriging surrogate
mode meets the requirements. At the same time, to guarantee the precision and dependability of the
model, verification points are set for explanation [23-26], and the number of verification points is
consistent with the output variables, set to 3. The nearer the point set approaches the y = x line, the more
ideal the model's fitting effect will be. The fitting results are shown in Figure 10. The verification points
of the three objective functions are highly coincident with the y=x lines, which indicates that the model
has high fitting accuracy in these three output variables. In summary, the proxy model proposed in this

study can be used to calculate the cable force optimization for RC arch bridges.
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Figure 9 Kriging proxy model multi-objective optimization convergence journey.
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Figure 11 shows the partial structural response surface fitted according to the Kriging model. By
examining the bridge structural response surface, the Kriging model is demonstrated to effectively fit the

bridge’s structural response characteristics. The response surface is smooth, and the fitting effect is
favorable.
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Figure 11 Kriging response surface.

Based on the proposed IGWO in this study, the Pareto frontier solution set for the multi-objective
optimization of O, O, and O3 is obtained, as shown in Figure 12. The figure illustrates that this study
involves three optimization objectives, with the Pareto frontier solution set distributed in a three-
dimensional space. With the optimization iteration, Pareto frontier solution set approaches to the
minimum values of O1, O2 and O3, and basically converges when iteration reaches the 50th time.
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Figure 12 Pareto frontier solution set.

5.4 Optimization analysis of tension

When analyzing the results of cable force optimization, since only half structure is selected for research
in Section 4.2, Figure 13 shows the comparison before and after cable force optimization. The figure
clearly demonstrates that the distribution trends of the cable forces before and after optimization are
essentially consistent, with the optimized values exhibiting varying degrees of increase compared to the
originally designed cable forces. Among them, the cable force value at the arch foot increases slightly,
while the cable force value at the middle position and the crown position increases greatly, and the 15#
cable has the most significant increase, about 12.1%. Based on the analysis of the mechanical
characteristics of the RC arch bridge cantilever, as construction progresses, the horizontal angle between
the cable and the arch ring segment increases; simultaneously, the vertical component of the cable force
decreases while its horizontal component increases. Therefore, the increase in the optimized cable force
provides more vertical component for each arch ring during cantilever pouring, thereby preventing the
vertical component from being insufficient—caused by the increased horizontal angle—from
compromising the arch ring’s stability and ensuring construction safety.
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Figure 13 Cable force optimization results.

As shown in Figure 14, which compares the peak tensile stresses in each arch segment before and after
optimization, the top and bottom plates of all segments exhibit a significant reduction in peak tensile
stress post-optimization. The decrease is particularly pronounced in the top plates of mid-arch segments,

14



whereas the reductions in the arch crown and springing segments are relatively modest. For Segments
#10-#11, top plate peak tensile stress decreased by over 40% after optimization. Specifically, Segment
#11’s peak tensile stress dropped from 3.38 MPa (pre-optimization) to 1.89 MPa, representing a
reduction of approximately 44.1%. Additionally, substantial declines were observed in the bottom plate
peak tensile stresses of all segments, with Segment #13 experiencing the most significant reduction of
about 67.3%. Following cable force optimization, peak tensile stresses in all arch segments of the
reinforced concrete arch bridge remained below the design tensile strength of C80 concrete, thus
fulfilling the optimization objectives.
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Figure 14 Optimization results of peak tensile stress of each section of the arch ring. (a) Peak tensile
stress of arch segment roof. (b) Peak tensile stress of arch ring segment floor.

Figure 15 illustrates the bending moment and axial force values of the arch ring in the completed-bridge
state before and after cable force optimization. As depicted, the internal force distribution trends remain
largely consistent before and after optimization, though both bending moments and axial forces at various
arch ring sections show varying degrees of reduction. Specifically: The arch foot bending moment
decreases from 37,991.8 KN-m to 34,327.9 kN-m, a reduction of approximately 9.6%. The arch crown
bending moment decreases from 62,786.9 KN-m to 54,737.7 kN-m, a reduction of approximately 12.8%.
The arch foot axial force decreases from 79,821 kN to 79,155.8 kN, a reduction of approximately 0.8%.
The arch crown axial force decreases from 67,774 kN to 66,960.9 kN, a reduction of approximately 1.2%.
Following optimization, the RC arch bridge’s internal force distribution under dead load is more
reasonable, fulfilling the optimization objectives.
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Figure 15 Internal force optimization results of arch bridge. (a) Bending moment optimization results.
(b) Axial force optimization results.

Figure 16 shows that the vertical displacement of the RC arch bridge’s main arch ring decreases
significantly after cable force optimization. Because the position constraint of arch foot is large and the
vertical displacement is small, the displacement re-duction after cable force optimization is not
significant. During the cantilever pouring process, as the cable length increases, the cable force rises
correspondingly. Moreover, at the closing section, the vertical force supplied by the cable force is
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relatively minimal, and it is precisely at this moment that the vertical displacement reaches its maximum
value. After optimization, the vertical deformation of the arch top position decreased from 15.94 cm to
12.83 cm after optimization, with a decrease of about 19.5%. The overall linear distribution of the arch
ring was more reasonable than before optimization, which greatly improved the overall safety and
reliability performance of the RC arch bridge structure and met the optimization objectives.
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Figure 16 Optimization results of the vertical displacement of each segment of the arch ring.
6. Conclusions

To tackle the challenge of optimizing cable force during the cantilever casting of RC arch bridges, this
study proposes a multi-objective cable force optimization method based on Kriging-IGWO. Multiple
strategies are introduced to enhance the traditional Grey Wolf Optimization algorithm. Leveraging the
Kriging surrogate model and multi - objective optimization theory, a multi - objective cable force
optimization model for reinforced concrete arch bridges is developed, from which the following
conclusions are derived: The following conclusions are obtained:

(a) By incorporating the Levy flight strategy, nonlinear attenuation strategy, and dynamic weight
coefficient strategy to enhance the traditional Gray Wolf Optimizer (GWO), the IGWO algorithm is
verified by six benchmark test functions to exhibit superior convergence accuracy, better stability, and
significant advantages in solving complex function optimization problems.

(b) A Kriging surrogate model was constructed to fit the structural response surface of the RC arch bridge.
After the seventh update, the multiple correlation coefficients R? for the multi-objective optimization all
exceeded 0.98. The model’s predicted values aligned well with the design points overall, and the
verification points of the three objective functions lay close to the y=x line, demonstrating that the model
exhibits high fitting accuracy for these three output variables. It can effectively predict the structural
response, providing reliable support for the cable force optimization of the cantilever-poured RC arch
bridge structure.

(c) Based on the Kriging-IGWO cable force optimization model, the cable forces of the RC arch bridge
were optimized. After optimization, the cable force distribution trend remained consistent with the
original design, though the cable force values increased. The peak tensile stresses in the top and bottom
plates of each arch ring segment decreased significantly, all falling below the design tensile strength of
C80 concrete. The internal force distribution trend remained basically unchanged, yet the bending
moments and axial forces of each arch ring segment were reduced to varying degrees. The vertical
displacement of the main arch ring decreased notably: the arch crown displacement dropped from 15.94
cm to 12.83 cm, a reduction of approximately 19.5%. The arch ring’s deformation distribution became
more reasonable, enhancing the overall safety and reliability of the bridge structure and fulfilling the
optimization objectives.
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