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Abstract: To address the limitations of conventional cable force optimization methods in simulta-

neously handling multiple objectives, this study presents a Kriging-IGWO multi-objective cable force 
optimization framework for reinforced concrete (RC) arch bridges, integrated with multi-objective 

optimization theory. The proposed methodology couples a Kriging surrogate model with an Improved 

Grey Wolf Optimization (IGWO) algorithm. First, three enhancement strategies are introduced to 

improve the traditional Grey Wolf Optimizer, reducing its vulnerability to local optima and enabling 

adaptation to complex high-dimensional optimization problems. Subsequently, the mechanical behavior 

of RC arch bridges during cantilever construction is analyzed, and a multi-objective cable force 

optimization model is established using multi-objective theory and the Kriging surrogate model. Finally, 

the framework is validated through a case study of a long-span RC arch bridge, yielding optimized cable 

force solutions. The results demonstrate that the IGWO algorithm outperforms other optimization 

algorithms in convergence accuracy and stabil-ity when solving both unimodal and multimodal test 

functions. The Kriging-based sur-rogate model for the RC arch bridge meets the required accuracy 
thresholds and exhibits strong adaptability to multi-objective cable force optimization tasks. The 

optimized cable force distribution aligns well with the initial design concept but shows a moderate in-

crease in force magnitudes. Notably, peak tensile stresses in the top and bottom slabs of arch segments 

are significantly reduced, accompanied by decreases in bending moments and axial forces across arch 

cross-sections. Vertical displacements of the main arch are markedly minimized, and the geometric 

linearity of the arch is optimized, fully satisfying all predefined design objectives. 

Keywords:  Reinforced concrete arch bridge; Cable force optimization; Kriging surrogate model; Im-

proving the Gray Wolf algorithm; Multi-Objective optimization  

 

1. Introduction 

Characterized by their superior spanning capability, aesthetically pleasing configurations, and 

exceptional structural durability, reinforced concrete (RC) arch bridges assume a pivotal role in 
contemporary bridge engineering, finding extensive application in the development of transportation 

infrastructure, including highways and railways. With the continuous growth of traffic volume and the 

increasing demands on the structural performance of bridges, ensuring that RC arch bridges have good 

mechanical properties and stability during their service life has become a key issue in the engineering 

field. As a critical determinant governing the mechanical behavior of reinforced concrete (RC) arch 

bridges, the rational optimization of cable forces holds paramount significance. Precise determination of 

cable force distribution not only enables meticulous modulation of the arch rib’s internal force state—

thereby maintaining optimal stress levels that balance safety and efficiency under all loading scenarios—

but also substantially enhances the bridge’s global stiffness, mitigates deformations, and ensures long-

term operational reliability throughout its service life. 

Conventional cable force optimization methods predominantly rely on finite element analysis (FEA). 
While delivering high accuracy, these approaches suffer from excessive computational loads and high 

operational costs, making them impractical for meeting rapid optimization requirements in real-world 

engineering scenarios [1-3]. Over the past decade, intelligent optimization algorithms have garnered 

extensive attention and application due to their superior global search capability and effectiveness in 

handling com-plex problems. Scholars worldwide have begun applying these algorithms to cable force 

optimization challenges. Zhu [4] employed finite element software and Matlab as the computational core 

and primary control framework, formulating an objective function centered on minimizing bending 

moment energy. By integrating an influence matrix and an elite retention strategy into the genetic 

algorithm, the study conducted optimization of cable forces for the completed-stage cable-stayed bridge. 

The results demonstrated that this approach could significantly reduce computational workload while 

attaining superior computational precision. Zhou [5] introduced a cable force optimization methodology 
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leveraging a deep neural network (DNN) surrogate model. By employing a finite element model to 

generate load-induced configuration samples that characterize the optimization problem, the DNN 

surrogate model was utilized to learn the intrinsic mapping relation-ships within these samples—thereby 

decoupling the optimization process from finite element analysis. Random cable forces within reasonable 

constraints can be fed into the surrogate model to accurately predict the corresponding arch rib 
configurations. Zhong [6] utilized an enhanced particle swarm optimization algorithm to optimize the 

stay cable forces of an asymmetric single-tower cable-stayed bridge in its as-built state. By formulating 

the objective function as the summation of bending energies for both the main girder and bridge tower, 

a quadratic mathematical optimization model was established, with outcomes compared against those 

from the traditional unconstrained minimum bending energy approach. The results demonstrate that the 

enhanced particle swarm optimization algorithm is efficient, robust, and practically viable for cable force 

optimization in completed bridge structures. Guo [7] performed an optimization investigation on the 

cable forces of a specific curved cable-stayed bridge by integrating the simulated annealing algorithm 

with a cubic B-spline interpolation curve. The results demonstrated that this approach can efficiently 

generate multiple objective function values, thereby identifying the optimal solution as the minimum 

among these values and offering a valuable reference for cable force optimization in curved cable-stayed 

bridge engineering. 
Traditional cable force optimization methods are mostly based on a single objective, such as minimizing 

structural internal forces or only considering the minimization of structural deformation. However, in 

practical engineering, the optimal design of bridge structures often requires comprehensive consideration 

of multiple objectives [8-12]. The sole application of machine intelligence algorithms to solve cable force 

optimization problems suffers from two issues: large computational load and insufficient depth in the 

practical implementation of such algorithms. Therefore, based on the multi-objective optimization theory, 

this study combines the improved Gray Wolf algorithm (IGWO) with Kriging surrogate mode to propose 

a Kriging-IGWO multi-objective cable force optimization method for RC arch Bridges, which can 

provide references for the cable force optimization of RC arch Bridges in engineering, and has important 

theoretical significance and engineering application value. 

 
 

2. Kriging response surface model construction 

 

To fit the response surface of the long-span RC arch bridge, the design parameters of numerous sets of 

arch bridge models were fed into the finite element software. Subsequently, the corresponding response 

parameters were acquired. These parameters were then utilized as the training sample dataset for 

establishing the Kriging surrogate model. Through the establishment of a Kriging surrogate model, the 

response surface of the RC arch bridge was approximated with high fidelity. Drawing upon the theory of 

stochastic processes, the Kriging surrogate model forecasts the response of unknown points via the 

spatial correlation of sample points. This is done to formulate an approximate association between input 

variables and output responses [12]. Its mathematical representation is presented in Equation (1): 

 

 ( ) ( , ) ( ) ( ) ( )Ty x F z z   β x x f x β x  (1) 

where, y(x) represents the response value of RC arch bridge structure; 
( )T

f x β
stands for the polynomial 

regression part; f(x) stands for a polynomial basis function vector; 
β

 is employed to signify the 

regression coefficient vector; z(x) is a random part, and its statistical characteristics follow a normal 

distribution, as presented in equation (2): 
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where, θ stands for the correlation function parameter; 
( , , )i jR x x

 serves as the correlation function 

between any two sample points. and 
k k

k i jd x x 
 is usually related, and its expression is shown in 

equation (3): 
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where, n is the dimension of the random variable. 

To precisely acquire the optimal linear unbiased estimation of the prediction point x, it is necessary to 

minimize the mean square error value of prediction point x, and the expressions of mean and variance 

are shown in equations (4)-(5): 



3 

 

 
1( ) ( ) ( )

y

x r x R F  

 
  Y  (4) 

 
2 2 1 1 1( ) ( )(1 ( )( ) ( ) ( ) ( ))T T T

y

x x x F R F x r x R r x   

      (5) 

where, 01 2( ) [ ( , ; ), ( , ; ), , ( , ; )]Nr x R x x R x x R x x  
  


,

1( ) ( ) ( )Tx F R r x f x  
. 

 

The predicted value is: 
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From the foregoing Kriging model construction procedure, it is evident that the predicted value is 

exclusively dependent on the variables β̂ , R and r, so the response value of each sample point can be 

obtained only by obtaining the relevant parameter θ. 

According to equation (1), the stochastic process follows a normal distribution, then y(x) also follows a 

normal distribution, then the log-likelihood function is: 

 2 21 ˆ ˆln ln /
2

m     
 

T -1
R (Y - Fβ) R (Y - Fβ)  (7) 

Taking the derivative of β̂  and σ2 respectively and substituting them into equation (7), we can get: 

 21
ln ln

2
m    R  (8) 

Maximizing equation (8) yields the optimal solution for the parameter θ as follows: 

 

2

1
2

1
arg max ln ln

2

arg min m

m 



  
     

 

 
  

 

R

R

 (9) 

Kriging prediction model can be constructed by solving the above formula. 

 

3. The improved Gray Wolf algorithm based on multiple strategies 

 

3.1 Standard Gray Wolf algorithm (GWO) 

 

The Grey Wolf Optimizer (GWO), a swarm - based intelligent optimization algorithm, was introduced 

by Seyedali in 2014. drawing inspiration from the predatory actions and pack hierarchy within grey 

wolves [13,14]. The rank distribution within the grey wolf population is shown in Figure 1. α wolf is the 

leader in the grey wolf population, responsible for decision-making on hunting, rest and other group 

activities, which is consistent with the optimal solution within the optimization problem; β wolf is the 

assistant of α wolf, assisting in decision - making and guiding the search direction in the algorithm, 

second only to α wolf, and thus is regarded as the suboptimal solution of the objective function; δ wolf 

is the third optimal solution of the objective function, which is responsible for reconnaissance and 

lookout, and plays a role in exploring and developing the search space; ω wolves are at the lowest level 

of the group, so they should follow the command of other grades of grey wolves and find candidate 

solutions to the corresponding objective functions in the algorithm [15]. 

 
Figure 1 Grey wolf population hierarchy 
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Figure 2 The process of wolf hunting 

The optimization process of the GWO algorithm is modeled after the predatory behavior of grey wolf 

packs. The grey wolf predation process is divided into three sequential stages: prey encirclement, prey 

pursuit, and prey assault, as illustrated in Figure 2. Guided by the α wolf, β and δ wolves execute prey 

encirclement, with the prey position assumed to represent the optimal solution. Through iterative 

approximation by the α, β, and δ wolves—collectively termed the top-tier individuals—the optimal 

positions of these dominant wolves are leveraged to direct the remaining pack members, including ω 

wolves, toward continuous convergence on the prey. Within the algorithm's search space, the pack's 

position update formula during prey encirclement is defined by equation (10): 
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where, t denotes the iteration number in the algorithm;
( )i tX

 and 
( 1)i t X

 denotes the current location 

and target location of the gray wolf respectively;
( )p tX

 denotes the prey position; D is the distance 

between the first three gray wolves and other wolves; A and C denote the convergence factor vector and 

the coefficient vector, respectively; r is a random vector with values between 0 and 1; a is the attenuation 

factor. 
 

Following prey encirclement, the top three wolves (α, β, δ) initiate prey pursuit, leading the entire pack 

to constrict the encirclement around the prey. The mathematical model describing this hunting process 

is defined by equation (11): 
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where, D
, D

 and D
 denote the distances between the top three wolves and individual pack members, 

respectively; 1X
, 2X

 and 3X
 denote the updated positions of individual pack members based on the 

positions of the top three wolves; 
( 1)t X

 denotes the final position of an individual wolf after the t-th 

iteration. 

The GWO algorithm computes the fitness values of individual wolves within the pack via iterative 

updates, thereby enabling the update of their optimal positions. This process enables the continuous 

optimization of the objective function value and makes it gradually approach the global optimal solution. 

 



5 

 

3.2 The improved Gray Wolf algorithm 

 

The search mechanism of the traditional GWO algorithm relies on emulating the behavioral patterns of 

grey wolves with distinct hierarchical roles within the pack. During the algorithm's iterative process, if 

the α wolf fails to represent the global optimum, its guidance of the search may lead to premature 
convergence of the population to a local optimum [16-19]. To address this issue, the Levy flight strategy 

is incorporated into the algorithm to enable individual grey wolves to explore a broader search space, 

escape local optimum traps, and accelerate convergence. Additionally, to balance the algorithm’s local 

and global search capabilities and enhance its stability, a nonlinear attenuation strategy is employed to 

adjust the attenuation factor a. Lastly, to enhance the algorithm’s search flexibility and improve its 

convergence performance, a dynamic weight coefficient is incorporated to adjust the grey wolf positions. 

The detailed improvement procedure is outlined as follows: 

 

In this study, the position of α wolves is updated by employing the Levi flight strategy, and the α wolves 

guide the other wolves to update the position of the whole population, with the aim of enhancing the 

algorithm's global search capacity. Levy flight has the characteristics of random and long distance 

hopping, which can enable the gray wolf donor to explore a larger scope in the search space. Its search 
step size follows the heavy tail distribution, but the search is more concentrated in the potential area, 

reducing the search time in the ineffective area. With the incorporation of the Levy flight strategy, the 

grey wolf position update formula is defined by equation (14): 

 ( ) ( ) ( )t t l Levy    X X  (14) 

where,
( )tX

 denotes the optimal position of a grey wolf after the t-th iteration; l denotes the weight 

coefficient; Levy(λ) denotes the search path that obeys the Levy distribution,
(1,3) 

,λ in this study is 

1.5, so: 
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where, bestX
is the historical optimal solution of the algorithm iteration process; u and v are random 

variables subject to normal distribution, then: 
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where,   is a gamma function. 

In the Grey Wolf algorithm, the attenuation factor a follows a linear attenuation pattern, where its value 

decreases linearly from 2 to 0 as the number of iterations increases. This linear decay fails to effectively 

balance the algorithm’s global convergence and local search capabilities. To balance the algorithm’s 

local and global search capabilities and enhance its stability, this study proposes a sinusoidal attenuation 

strategy to modify the linear decay of factor a in the GWO algorithm: 

 
max

1 sin( )
2

t
a

t


     (17) 

where, tmax denotes the maximum number of iterations in the algorithm. 

Figure 3 shows the curves of linear attenuation and sinusoidal attenuation during 100 iterations. From 

the figure, it is evident that during the algorithm’s initial stage, the sinusoidal attenuation factor assumes 

a larger value, expanding the search range of grey wolf individuals, enhancing global search capabilities, 

and enabling exploration of the potential optimal solution region within a broader search space. As 

iterations progress, the sinusoidal attenuation factor decreases nonlinearly, prompting grey wolves to 

gradually shift focus to local search and exploit high-quality regions, thereby improving solution 
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accuracy. Therefore, the nonlinear attenuation factor proposed in this study enables better balance 

between the algorithm’s local and global search capabilities. 

 
Figure 3 Attenuation factor change curve. 

As defined in equation (13), in the traditional GWO algorithm, the final position of each individual wolf 

is determined as the mean of the top three wolves' positions. Therefore, whether the algorithm can 

eventually approach the global optimal solution has a close relationship with the positions of the top 

three - ranked wolves. If the α wolf is not the representative of the global optimal solution, the algorithm 

has a high probability of landing in the local optimal solution. This study proposes a dynamic weight 

coefficient strategy to enhance the global optimization capabilities of the GWO algorithm. The dynamic 

weight coefficient can be adaptively adjusted based on the algorithm’s iterative process or search state, 

enabling individual grey wolves to flexibly switch between exploring new regions and exploiting existing 

knowledge. This mechanism enhances the algorithm’s search flexibility and improves its convergence 

performance. After introducing the dynamic weight coefficient strategy, the final position of the wolf 

pack individual after the t iteration is transformed from equation (13) to equation (18), as shown in: 

 1 1 2 2 3 3( 1)
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where, w denotes the weight coefficient for the positions of the top three wolves; 
The flow of the IGWO algorithm is depicted in Figure 4. 
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Figure 4 IGWO algorithm flowchart. 

 

4.  Multi-objective cable force optimization model in Kriging-IGWO 

 

To determine the optimal cable force combination during the cantilever construction of an RC arch bridge, 

this study aims to ensure reasonable load distribution after the bridge is completed, control its 

deformation under service loads, and safeguard the structural safety of the arch bridge. This study 

establishes a cable force optimization model grounded in Kriging-IGWO. Taking the arch bridge’s 

design cable forces as design variables, the model defines the optimization control goals as the stress of 

the arch ring section during the cantilever construction stage, the internal forces of the completed arch 
bridge, and its deformation. 

 

During the cantilever construction stage of an RC arch bridge, the stress distribution in the arch ring 

section is relatively complex, where excessive tensile stress during cable force adjustment can easily lead 

to cracks in the top and bottom flanges of the arch ring. Therefore, to ensure that the tensile stress in the 

arch ring does not exceed the concrete’s tensile strength during cable force tensioning, the average tensile 

stress at the top and bottom flanges of the arch ring is set as the control objective, and the optimization 

objective function is formulated as follows: 

  1

1

1
Min

n
t b

i i

i

O
n

 


 
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 
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where, n denotes the quantity of cantilever pouring stages for the RC arch bridge; σ denotes the tensile 

stress in the arch ring during the cantilever pouring stage of an RC arch bridge;  
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Optimizing the cable forces of the stay cables in an RC arch bridge leads to a more reasonable internal 

force distribution in the bridge’s main load-bearing components. This optimization enables full 

utilization of material properties and enhances the load-bearing capacity of the bridge structure. By taking 

the eccentric moment of the bridge’s main arch as the control objective for its internal forces, the 
optimization objective function is formulated as follows: 

 2

1

Min
n

i

i

e
O

n

 
  

 
  (21) 

where, e is the eccentricity of the main arch, 
/i i ie M N

. 

 

Optimizing the cable forces of an RC arch bridge effectively controls its deformation under dead weight 

and service loads, ensuring that the bridge’s linear geometry better meets the design specifications. 

Taking the sum of squares of the differences between the vertical displacements obtained from finite 

element calculations and the target vertical displacements at each construction stage of the completed 
arch ring as the deformation control objective, the optimization objective function is formulated as 

follows: 
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Based on the cable force design, 50 groups of sample points were selected by Latin hypercube and 

calculated in the finite element software. The response values of the above control targets were obtained, 

and the response values were substituted into the Kriging model for fitting. To check the prediction 

accuracy of Kriging surrogate mode, this study uses the complex correlation coefficient R2 to illustrate. 

The closer R2 is to 1, the higher the accuracy of the model [18-22]. 

 

2

,
2 1

2

,

1

( )

( )

n

i pre ave

i

n

i true ave

i

R

 

 














 (23) 

where, ,i pre
, ,i true

 and ave
 denote the predicted value, true value, and average value of point i, 

respectively. 

 

Based on the above analysis, a cable force optimization model for RC arch bridges under cantilever 

casting was established using Kriging-IGWO. According to the principle of symmetrical structure, 21 

stay cables of half structure were selected for analysis. The optimized mathematical model is shown in 
Equation (24). 
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where, X denotes the cable force to be optimized; 
t

if  denotes the design tensile strength of the concrete 

in an RC arch bridge.. 

 

Figure 5 depicts the fundamental workflow of cable force optimization for the Kriging-IGWO-based RC 

arch bridge structure during cantilever pouring construction. 
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Figure 5 Cable force optimization process of RC arch bridge based on Kriging-IGWO. 

 

5.  Engineering Example 

 

5.1  Engineering background and finite element model 
 

Against the project background of the Shuiluohe Bridge in Guizhou Province, the main bridge is a 

reinforced concrete cantilever-cast arch bridge with a calculated span of 335 m. The main bridge deck 

consists of simply supported prestressed concrete I-beams with a span arrangement of 11×31.75 m and 

composite bridge panels. A catenary unhinged arch of the same cross - section is employed for the main 

arch. The ratio of its vector span is 1/4.2, while the coefficient of the arch axis is 1.8. The arch rib is 

constructed in 45 sections, and section 1-2 (1 '~2') of arch foot is cast in place by scaffolding. Section 3-

22 (3 '~22') adopts hanging basket cantilever casting, and mid-span closing section adopts hanger 

construction. C80 concrete is used for casting all arch ribs. and the bridge construction layout is shown 

in Figure 6. 
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(a)  (b)  

Figure 6 Bridge layout and site monitoring. (a) Layout of bridge type. (b) Construction site monitoring. 

 

The numerical calculation model of RC arch bridge structure was established by finite element software. 

The eight-node SOLID65 element was used to simulate the concrete main arch ring and junction pier, 

the LINK180 element for fasteners and anchor cables, and beam elements for arch columns and main 

girders. The entire bridge was meshed using a combination of mapping and sweeping methods. Figure 7 

presents the finite element model. 
 

 

Figure 7 Finite element model. 

 

5.2  Algorithm performance testing 

 

To validate the performance of the improved strategy in seeking optimal solutions as presented in this 

study, 6 types of CEC benchmark test functions are selected to illustrate, including 3 single-peak multi-

dimensional test functions and 3 multi-peak multidimensional test functions. The optimization 

performance of the improved Gray Wolf algorithm in this study is compared with GWO, WOA and DBO 

algorithms, and the test functions are listed in Table 1. 

 
Table 1 Test function basic information. 

Function number Function name 
The theoretical optimal 

solution 

f1 Sphere 0 

f2 Step function 0 

f3 Quartic noise function 0 

f4 Ackely 0 

f5 Generalized Griewank function 0 

f6 Generalized penalty function 0 

 

Each algorithm operates with a population of 30 and a maximum of 500 iterations. It is independently 

run 30 times on the test function. The optimization performance of each algorithm is evaluated by 

comparing the optimal, average, and standard deviation values of the test functions calculated by each 

algorithm. The optimization results are presented in Table 2. 

 

From Table 2, the IGWO algorithm in this study has reached the theoretical optimal solution in two 
single-peak test functions and one multi-peak test function, and the standard deviation of the five test 

functions is 0. Although IGWO did not obtain the theoretical optimal solution for the remaining one 

single-peak and two multi-peak test functions, its obtained optimal values are closer to the theoretical 

3350
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optimum than those of the other three optimization algorithms, with the average optimal values serving 

as a reference. For the Ackley function, although the optimal value obtained by the proposed IGWO is 

comparable to those of other algorithms, its standard deviation is zero, indicating that the Levy flight 

strategy and nonlinear attenuation factor introduced in this study enhance the algorithm’s stability, 

strengthen its global search capability, and prevent it from falling into local optima. These results 
demonstrate that the IGWO algorithm outperforms other optimization algorithms in convergence 

accuracy and stability when solving both single-peak and multi-peak function problems. 

 

Table 2 Optimization test results. 

 

Function number Algorithm name Optimal value Mean value 
Standard 

deviation 

f1 

WOA 6.2×10-18 2.1×10-11 7.3×10-11 

DBO 7.7×10-29 9.2×10-17 2.2×10-17 

GWO 9.5×10-16 1.8×10-15 2.5×10-15 

IGWO 0 0 0 

f2 

WOA 5.6×10-2 5×10-1 3×10-1 

DBO 9.1×10-5 9.3×10-3 4.6×10-2 

GWO 2.5×10-1 5.1×10-1 3.4×10-1 

IGWO 0 0 0 

f3 

WOA 1.5×10-5 4.6×10-3 5.7×10-3 

DBO 3.2×10-5 3.1×10-3 3.2×10-3 

GWO 4.9×10-4 2.2×10-3 1.3×10-3 

IGWO 7.8×10-6 7.1×10-5 1.5×10-5 

f4 

WOA 2.5×10-15 2.4×10-14 1.8×10-14 

DBO 1.5×10-16 1.5×10-16 0 

GWO 3.5×10-15 4.2×10-14 2.5×10-15 

IGWO 1.3×10-16 1.3×10-16 0 

f5 

WOA 0 2.1×10-2 4.9×10-2 

DBO 0 0 0 

GWO 0 7×10-3 1.8×10-2 

IGWO 0 0 0 

f6 

WOA 4×10-6 2.8×10-6 2.3×10-5 

DBO 7.3×10-7 1.4×10-5 3.2×10-5 

GWO 1.2×10-6 5.1×10-6 3.5×10-6 

IGWO 1.7×10-25 1.7×10-25 0 

 

To validate the improved convergence speed of the proposed IGWO algorithm, this study presents the 

comparison results of the convergence curves of the four algorithms for the test functions, as shown in 

Figure 7. For f3, f4 and f6 test functions, a while neither IGWO nor the other algorithms converge to the 

theoretical optimal solution, IGWO exhibits faster convergence speed, approaches the theoretical 

optimum more closely in later iterations, and achieves better convergence accuracy, confirming the 

improvement in its convergence speed. 
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(a) (b) 

  

(c) (d)  

  

(e) (f) 

Figure 8 Comparison results of convergence velocity curves. (a) f1 iterative curve. (b) f2 iterative curve. 
(c) f3 iterative curve. (d) f4 iterative curve. (e) f5 iterative curve. (f) f6 iterative curve. 

 

5.3 Surrogate mode accuracy verification 

 

According to the process mentioned previously, the Kriging surrogate model was built. To validate the 

prediction precision of the surrogate model, the complex correlation coefficient R2 was utilized to 

demonstrate. Figure 9 depicts the convergence history of the multi-objective optimization for the Kriging 

surrogate model. The multiple correlation coefficients R2 corresponding to the three optimization 

objectives are all greater than 0.98, indicating that the accuracy of the 7th-generation Kriging surrogate 

mode meets the requirements. At the same time, to guarantee the precision and dependability of the 

model, verification points are set for explanation [23-26], and the number of verification points is 

consistent with the output variables, set to 3. The nearer the point set approaches the y = x line, the more 
ideal the model's fitting effect will be. The fitting results are shown in Figure 10. The verification points 

of the three objective functions are highly coincident with the y=x lines, which indicates that the model 

has high fitting accuracy in these three output variables. In summary, the proxy model proposed in this 

study can be used to calculate the cable force optimization for RC arch bridges. 
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Figure 9 Kriging proxy model multi-objective optimization convergence journey. 

 
Figure 10 Fitting curve 

Figure 11 shows the partial structural response surface fitted according to the Kriging model. By 

examining the bridge structural response surface, the Kriging model is demonstrated to effectively fit the 

bridge’s structural response characteristics. The response surface is smooth, and the fitting effect is 

favorable. 

 

 
Figure 11 Kriging response surface. 

 

Based on the proposed IGWO in this study, the Pareto frontier solution set for the multi-objective 

optimization of O1, O2 and O3 is obtained, as shown in Figure 12. The figure illustrates that this study 

involves three optimization objectives, with the Pareto frontier solution set distributed in a three-

dimensional space. With the optimization iteration, Pareto frontier solution set approaches to the 

minimum values of O1, O2 and O3, and basically converges when iteration reaches the 50th time. 
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Figure 12 Pareto frontier solution set. 

 

5.4 Optimization analysis of tension 

 

When analyzing the results of cable force optimization, since only half structure is selected for research 

in Section 4.2, Figure 13 shows the comparison before and after cable force optimization. The figure 

clearly demonstrates that the distribution trends of the cable forces before and after optimization are 

essentially consistent, with the optimized values exhibiting varying degrees of increase compared to the 

originally designed cable forces. Among them, the cable force value at the arch foot increases slightly, 

while the cable force value at the middle position and the crown position increases greatly, and the 15# 

cable has the most significant increase, about 12.1%. Based on the analysis of the mechanical 

characteristics of the RC arch bridge cantilever, as construction progresses, the horizontal angle between 

the cable and the arch ring segment increases; simultaneously, the vertical component of the cable force 
decreases while its horizontal component increases. Therefore, the increase in the optimized cable force 

provides more vertical component for each arch ring during cantilever pouring, thereby preventing the 

vertical component from being insufficient—caused by the increased horizontal angle—from 

compromising the arch ring’s stability and ensuring construction safety. 

 

 
Figure 13 Cable force optimization results. 

 

As shown in Figure 14, which compares the peak tensile stresses in each arch segment before and after 

optimization, the top and bottom plates of all segments exhibit a significant reduction in peak tensile 

stress post-optimization. The decrease is particularly pronounced in the top plates of mid-arch segments, 
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whereas the reductions in the arch crown and springing segments are relatively modest. For Segments 

#10–#11, top plate peak tensile stress decreased by over 40% after optimization. Specifically, Segment 

#11’s peak tensile stress dropped from 3.38 MPa (pre-optimization) to 1.89 MPa, representing a 

reduction of approximately 44.1%. Additionally, substantial declines were observed in the bottom plate 

peak tensile stresses of all segments, with Segment #13 experiencing the most significant reduction of 
about 67.3%. Following cable force optimization, peak tensile stresses in all arch segments of the 

reinforced concrete arch bridge remained below the design tensile strength of C80 concrete, thus 

fulfilling the optimization objectives. 

  

(a)  (b)  

Figure 14 Optimization results of peak tensile stress of each section of the arch ring. (a) Peak tensile 

stress of arch segment roof. (b) Peak tensile stress of arch ring segment floor. 
 

Figure 15 illustrates the bending moment and axial force values of the arch ring in the completed-bridge 

state before and after cable force optimization. As depicted, the internal force distribution trends remain 

largely consistent before and after optimization, though both bending moments and axial forces at various 

arch ring sections show varying degrees of reduction. Specifically: The arch foot bending moment 

decreases from 37,991.8 kN·m to 34,327.9 kN·m, a reduction of approximately 9.6%. The arch crown 

bending moment decreases from 62,786.9 kN·m to 54,737.7 kN·m, a reduction of approximately 12.8%. 

The arch foot axial force decreases from 79,821 kN to 79,155.8 kN, a reduction of approximately 0.8%. 

The arch crown axial force decreases from 67,774 kN to 66,960.9 kN, a reduction of approximately 1.2%. 

Following optimization, the RC arch bridge’s internal force distribution under dead load is more 

reasonable, fulfilling the optimization objectives. 
 

  

(a)  (b)  

Figure 15 Internal force optimization results of arch bridge. (a) Bending moment optimization results. 

(b) Axial force optimization results. 

 

Figure 16 shows that the vertical displacement of the RC arch bridge’s main arch ring decreases 

significantly after cable force optimization. Because the position constraint of arch foot is large and the 

vertical displacement is small, the displacement re-duction after cable force optimization is not 

significant. During the cantilever pouring process, as the cable length increases, the cable force rises 

correspondingly. Moreover, at the closing section, the vertical force supplied by the cable force is 
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relatively minimal, and it is precisely at this moment that the vertical displacement reaches its maximum 

value. After optimization, the vertical deformation of the arch top position decreased from 15.94 cm to 

12.83 cm after optimization, with a decrease of about 19.5%. The overall linear distribution of the arch 

ring was more reasonable than before optimization, which greatly improved the overall safety and 

reliability performance of the RC arch bridge structure and met the optimization objectives. 
 

 
Figure 16 Optimization results of the vertical displacement of each segment of the arch ring. 

 

6. Conclusions 

 
To tackle the challenge of optimizing cable force during the cantilever casting of RC arch bridges, this 

study proposes a multi-objective cable force optimization method based on Kriging-IGWO. Multiple 

strategies are introduced to enhance the traditional Grey Wolf Optimization algorithm. Leveraging the 

Kriging surrogate model and multi - objective optimization theory, a multi - objective cable force 

optimization model for reinforced concrete arch bridges is developed, from which the following 

conclusions are derived: The following conclusions are obtained: 

 

(a) By incorporating the Levy flight strategy, nonlinear attenuation strategy, and dynamic weight 

coefficient strategy to enhance the traditional Gray Wolf Optimizer (GWO), the IGWO algorithm is 

verified by six benchmark test functions to exhibit superior convergence accuracy, better stability, and 

significant advantages in solving complex function optimization problems. 

 
(b) A Kriging surrogate model was constructed to fit the structural response surface of the RC arch bridge. 

After the seventh update, the multiple correlation coefficients R2 for the multi-objective optimization all 

exceeded 0.98. The model’s predicted values aligned well with the design points overall, and the 

verification points of the three objective functions lay close to the y=x line, demonstrating that the model 

exhibits high fitting accuracy for these three output variables. It can effectively predict the structural 

response, providing reliable support for the cable force optimization of the cantilever-poured RC arch 

bridge structure. 

 

(c) Based on the Kriging-IGWO cable force optimization model, the cable forces of the RC arch bridge 

were optimized. After optimization, the cable force distribution trend remained consistent with the 

original design, though the cable force values increased. The peak tensile stresses in the top and bottom 
plates of each arch ring segment decreased significantly, all falling below the design tensile strength of 

C80 concrete. The internal force distribution trend remained basically unchanged, yet the bending 

moments and axial forces of each arch ring segment were reduced to varying degrees. The vertical 

displacement of the main arch ring decreased notably: the arch crown displacement dropped from 15.94 

cm to 12.83 cm, a reduction of approximately 19.5%. The arch ring’s deformation distribution became 

more reasonable, enhancing the overall safety and reliability of the bridge structure and fulfilling the 

optimization objectives. 
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